Гидридные фазы на основе высокоэнтропийных сплавов TiZrNbTa(Mo1–xVx), 0 < x < 1
- Авторы: Лушников С.А.1, Филиппова Т.В.1, Митрохин С.В.1
- 
							Учреждения: 
							- Московский государственный университет им. М. В. Ломоносова
 
- Выпуск: Том 60, № 7 (2024)
- Страницы: 846-853
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0002-337X/article/view/679368
- DOI: https://doi.org/10.31857/S0002337X24070083
- EDN: https://elibrary.ru/LQWPSR
- ID: 679368
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Выполнен синтез гидридных фаз на основе серии высокоэнтропийных сплавов TiZrNbTa(Mo1–xVx), где x = 0, 0.2, 0.4, 0.6, 0.8 и 1.0 с объемно-центрированной кубической решеткой. С использованием метода рентгеновской дифракции установлено, что кубическая решетка сплава при реакции гидридообразования сначала трансформируется в тетрагональную и затем в кубическую гранецентрированную. При этом с увеличением содержания ванадия в образцах возрастает доля фазы с кубической решеткой и повышается содержание водорода.
Полный текст
 
												
	                        Об авторах
С. А. Лушников
Московский государственный университет им. М. В. Ломоносова
							Автор, ответственный за переписку.
							Email: lushnikov@hydride.chem.msu.ru
				                					                																			                												                	Россия, 							Ленинские горы, 1, Москва, 119991						
Т. В. Филиппова
Московский государственный университет им. М. В. Ломоносова
														Email: lushnikov@hydride.chem.msu.ru
				                					                																			                												                	Россия, 							Ленинские горы, 1, Москва, 119991						
С. В. Митрохин
Московский государственный университет им. М. В. Ломоносова
														Email: lushnikov@hydride.chem.msu.ru
				                					                																			                												                	Россия, 							Ленинские горы, 1, Москва, 119991						
Список литературы
- Miracle D.B., Senkov O.N. A Critical Review of High Entropy Alloys and Related Concepts // Acta Mater. 2017. V. 122. P. 448–511. https:// doi.org/10.1016/j.actamat.2016.08.081
- Xu Z.Q., Ma Z.L., Wang M., Chen Y.W., Tan Y.D., Cheng X.W. Design of Novel Low-Density Refractory High Entropy Alloys for High-Temperature Applications // Mater. Sci. Eng. A. 2019. V. 755. № 7. P. 925–931. https:// doi.org/10.1016/j.msea.2019.03.054
- Rempel A.A., Gel’chinskii B.R. High-Entropy Alloys: Preparation, Properties and Practical Application // Izv. Ferrous Metallurgy. 2020. V. 63. № 3–4. P. 248–253. https:// doi.org/10.17073/0368-0797-2020-3-4-248-253
- Kunce I., Polanski M., Bystrzycki J. Structure and Hydrogen Storage Properties of a High Entropy ZrTiVCrFeNi Alloy Synthesized Using Laser Engineered Net Shaping (LENS) // Int. J. Hydrogen Energy. 2013. V. 38. № 27. P. 12180–12189. https:// doi.org/10.1016/j.ijhydene.2013.05.071
- Joo S.H., Okulov L.V., Kato H. Unusual Two-Step Dealloying Mechanism of Nanoporous TiVNbMoTa High-Entropy Alloys During Liquid Metal Dealloying // J. Mater. Technol. 2021. V. 14. P. 2945–2953. https://doi.org/10.1016/j.jmrt.2021.08.100
- Juan C.C., Tsai M.H., Tsai C.W., Lin C.M., Wang W.R. et al. Enhanced Mechanism Properties of HfMoTaTiZr and HfMoNbTaTiZr Refractory High-Entropy Alloys // Intermetallics. 2015. V. 62. P. 76–83. https://doi.org/10.1016/j.intermet.2015.03.013
- Zeng Q., Wang F., Li Z., Rong M., Wang J., Wang Z. Influence of Zr Addition on the Microstructure and Hydrogenation Kinetics of Ti50−xV25Cr25Zrx (x = 0, 5, 7, and 9) Alloys // Materials. 2024. V. 17. P. 1366–1379. https://doi.org/ 10.3390/ma17061366
- Zlotea C., Sow M.A., Ek G., Couzinié J-P., Perrière L., Guillot I., Bourgon J., Møller K.T., Jensen T.R., Akiba E., Sahlberg M. Hydrogen Sorption in TiZrNbHfTa High Entropy Alloy // J. Alloys Compd. 2019. V. 775. P. 667–674. https://doi.org/10.1016/j.jallcom.2018.10.108
- Nyga M., Ek G., Karlsson D., Sahlberg M., Sørby M., Hauback B. Hydrogen Storage in High-Entropy Alloys with Varying Degree of Local Lattice Strain // Int. J. Hydrogen Energy. 2019. V. 44. P. 29140–29149. https://doi.org/10.1016/j.ijhydene.2019.03.223
- Somenkov V.A. Structure of Hydrides // Ber Bunsen Cesel. Phys. Chem.1972. V. 76. P. 724–728. https//doi.org/10.1524/zpch.1979.117.117.125
- Соменков В.А., Иродова А.В., Шильштейн С.Ш. Объемные изменения при растворении водорода в переходных металлах // Физика металлов и металловедение. 1988. Т. 65. № 1. С. 132–136.
- Соменков В.А., Шильштейн С.Ш. Изменение объема при растворении водорода в переходных металлах и интерметаллических соединениях // Физика металлов и металловедение. 1998. Т. 86. № 3. С. 114–122.
- Westlake D.G., Mueller M.H., Knott H.W. Structural Transitions at Low Temperatures in Vanadium Deuterides // J. Appl. Crystallogr. 1973. V. 6. P. 206–216. https://doi.org/10.1107/S0021889873008496
- Yakel H.L. Thermocrystallography of Higher Hydrides of Titanium and Zirconium // Acta Crystallogr. 1958. V. 11. P. 46–51. https://doi.org/ 10.1107/s0567740875006267
- Müller H., Weymann K., Investigation of the Ternary Systems Nb-V-H and Ta-V-H // J. Less-Common Met. 1986. V. 119. P. 115–126. https://doi.org/10.101016/0022-5088 (86)90201-8
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




