Синтез, выращивание монокристаллов и электрофизические свойства соединений CuMBi3S6 и CuMEr3S6 (M–Pb, Ca, Eu, Yb)
- Авторы: Алиев О..1, Аждарова Д..1, Рагимова В..1, Максудова Т..1
- 
							Учреждения: 
							- Институт катализа и неорганической химии им. академика М. Нагиева Министерства науки и образования Азербайджанской Республики
 
- Выпуск: Том 61, № 7-8 (2025)
- Страницы: 387-393
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0002-337X/article/view/692244
- DOI: https://doi.org/10.7868/S3034558825040012
- ID: 692244
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Методами термического, рентгенофазового, микроструктурного анализов, измерением микротвердости и электрофизических свойств установлено образование соединений состава CuMBi3S6 и CuMEr3S6 (M – Eu, Pb, Yb, Ca). Показано, что полученные соединения изоструктурны, кристаллизуются в орторомбичесской сингонии (a = 11.201–11.236, b = 11.561–11.420, с = 4.003–3.966 Å, Z = 4, пр.гр. Pb21m, d = 4.17–3.570 г/см3) и относятся к структурному типу крупкаита CuPbBi3S6. Соединения типа CuMBi3S6 и CuMEr3S6 являются полупроводниками р-типа проводимости, вычислена их ширина запрещенной зоны.
			                Ключевые слова
Об авторах
О. М Алиев
Институт катализа и неорганической химии им. академика М. Нагиева Министерства науки и образования Азербайджанской Республики
														Email: iradam@rambler.ru
				                					                																			                												                								пр. Г. Джавида, 113, Баку, Az 1143 Азербайджан						
Д. С Аждарова
Институт катализа и неорганической химии им. академика М. Нагиева Министерства науки и образования Азербайджанской Республикипр. Г. Джавида, 113, Баку, Az 1143 Азербайджан
В. М Рагимова
Институт катализа и неорганической химии им. академика М. Нагиева Министерства науки и образования Азербайджанской Республикипр. Г. Джавида, 113, Баку, Az 1143 Азербайджан
Т. Ф Максудова
Институт катализа и неорганической химии им. академика М. Нагиева Министерства науки и образования Азербайджанской Республикипр. Г. Джавида, 113, Баку, Az 1143 Азербайджан
Список литературы
- Сhalcogenides: Advances in Research and Applications / Ed. Woodrow P. Nova Science, 2018. 103 p. https://doi.org/10.1039/B514640B
- Chands S., Sharma P. Synthesis and Сharacterization of Ag–Chalcogenide Nanoparticles for Possible Applications in Photovoltaies // Mater. Sci. Poland. 2018. V. 36. № 3. P. 375–380. https://doi.org/10.2478/msp-2018-0064
- Sanghoon X.L. Chalcogenides: From 3D to 2D and Beyond. Elsevier, 2019. 398 p. https://doi.org/10.1016/C2017-0-03585-1
- Каменский В.В., Шаренкова Н.В. Особенности свойств редкоземельных полупроводников // Физика и техника полупроводников. 2019. Т. 53. № 2. С. 158–160. https://doi.org/10.1134/S106378261902012X
- Ahluwalia G.K. Applications of Chalcogenides: S, Se and Te. Springer, 2016. 461 p. https://doi.org/10.1007/978-3-319-41190-3
- Min Jin, Siqi Lin, Wen Li, Zhiwei Chen, Rongbin Li et al. Fabrication and Thermoelectric Properties of Single – Crystal Argyrodite Ag8SnSe6 // Chem. Mater. 2019. V. 31(7). P. 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393
- Barbara K.H., Kai W., Yasar K., Trsitan D. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SnSe6 // Mater. Sci. Eng. 2017. P. 4833–4839. https://doi.org/10.1021/acs.chemmater.7b00767
- Lini L., Qing Jiao, Changgui Lin et al. Structural Characterization and Compositional Dependence of the Optical Properties of Ge–La–Ga–S Chalcogenide Glass System // Opt. Mater. 2018. V. 78. P. 295–301. https://doi.org/10.1016/j.optmat.2018.02.041
- El Naggar A.M., Albassam A.A., Lakshminatayana G., Halyan V.V. et al. Exploration of Nonlinear Optical Features of Ga2S3–La2S3 Glasses for Optoelectronic Applications // Glass Phys. Chem. 2017. V. 45. P. 467–471. https://doi.org/10.1134/S1087659619060142
- Zhang W., Liaw P.K., Zhang Y. Science and Technology in High-Entropy Alloys // Sci. China Mater. 2018. V. 61(1). P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
- Yang A., Sun M., Ren H., Lin H. Dy3+-doped Ga2S3–La2S3 Chalcogenide Glass for Mid-Infrared Fiber Laser Medium // J. Lumin. 2021. V. 237. P. 118169. https://doi.org/10.1016/j.jlumin.2021.118169
- Easo P.G., Dierk R., Robert O.R. High-Entropy Alloys // Nat. Rev. Mater. 2019. V. 4(2). P. 515–534. https://doi.org/10.1038/s41578-019-0121-4
- Jiang B., Yu Y., Cui J. et al. High-Entropy Stabilized with High Thermoelectric Performance // Science. 2021. V. 371(6531). P. 830–834. https://doi.org/10.1126/science.abe1292
- Oreshonkov A.S., Ararpin N.O., Shestakov N.P., Adichtchev S.V. Experimental and DFT Study of BaLaCuS3 Direct band gap semiconductor // Phys. Chem. Solids. 2021. V. 148. P. 109670. https://doi.org/1016/jpcs.2020.109670
- Andreev O.V., Atuchin V.V., Aleksandrovsky A.S., Denisenko Y.G., Zakharov B.A., Tyutunnik A.P., Habibullayev N.N., Velikanov D.A., Ulybin D.A., Shpindyuk D.D. Synthesis Structure and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er) // Crystals. 2022. V. 12. P. 17. https://doi.org/10.3390/cryst12010017
- Shahid O., Yadav S., Maity D., Deepa M., Niranjan M.K., Prakash J. Synthesis Crystal Structure DFT and Photovoltaic Studies of BaCeCuS3 // New J. Chem. 2023. V. 47. P. 5378–5389. https://doi.org/10.1039/D2NJ06301H
- Aliyev O.M., Ajdarova D.S., Maksudova T.F., Ragimova V.M., Bayramova S.T. Synthesis Growth of Monocrystals and Properties of the Compounds of PbLnCuS3 (Ln – La, Nd, Sm, Gd, Dy, Er) Type // Az. Chem. J. 2023. № 1. P. 183–190. https://doi.org/10.32737/0005-2531-2023-1-183-190
- Ruseikina A.V., Solovyov L.A., Grigoriev M.V., Andreev O.V. Crystal Structure Variations in the Series SrLnCuS3 (Ln = La, Pr, Sm, Gd, Er and Lu) // Acta Crystallogr. 2019. V. 75. P. 584–588. https://doi.org/10.1107/S2053229619004984
- Ruseikina A.V., Solovyov L.A., Galenko E.A., Grigoriev M.V. Kofined Crystal Structure of SrLnCuS3 (Ln = Er, Yb) // Rus. J. Inorg. Chem. 2018. V. 63. P. 1225–1231. https://doi.org/10.1134S0036023618090140
- Ruseikina A.V., Maxim V., Grigoriev M.V., Clocke R.J. et al. Synthesis Crystal Structure and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3. Experiment and Calculation // Materials. 2024. V. 17(10). P. 2284. https://doi.org/10.33901ma17102284
- Aliyev O.M., Ajdarova D.S., Ragimova V.M. et al. Phase Formation in the FeSb2S4–FeLn2S4 System, Synthesis and Properties of Compounds of the FeLnSbS4 (Ln = Nd, Er) Type // Chem. Problems. 2024. № 3(22). P. 361–368. https://doi.org/10.32737/2221-8688-2024-3-361-368
- Gulay L.D., Shemet V. Ya., Olekseyuk I.D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho and Er) System // J. Alloys Compd. 2007. V. 43(1–2). P. 77–84. https://doi.org/10.1016/j.jallcom.2006.05.029
- Aliev O.M., Bayramova S.T., Ajdarova D.S. et al. Synthesis and Properties of Synthetic Aykinite PbCuBiS3 Analogies // J. Condens. Matter. 2020. № 22(2). P. 182–189. https://doi.org/10.17308/kcmf.2020.22/2821
- Strobel S., Schleid T. Three Structures for Strontium Copper [I] Lanthanides [III] Selenides SrCuMSe3 (M – La, Gd, Lu) // J. Alloys Compd. 2006. V. 418. № 1–2. P. 80–85. https://doi.org/10.1016/j.jallcom.2005.09.090
- Agaeva R.M., Mammadov Sh.H., Azhdarova D.S., Ragimova V.M., Aliev O.M. Synthesis and Study of the Properties of Synthetic Analogues of the Mineral Naffildite with the Participation of Rare Earth Elements // J. Condens. Matter. 2022. V. 24(1). P. 3–10. https://doi.org/10.17308/kcmf.2022.24/9049
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

