New look at the structure of the nearest circumstellar environment of the weak-line T tauri star V718 Per
- Autores: Grinin V.P.1,2, Safonov B.S.3, Efimova N.V.1, Barsunova O.Y.1, Strachov I.A.3, Borman G.A.4, Shugarov S.Y.3,5
-
Afiliações:
- Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences
- St. Petersburg State University
- Sternberg Astronomical Institute, Lomonosov Moscow State University
- Crimean Astrophysical Observatory, Russian Academy of Sciences
- Astronomical Institute, Slovak Academy of Sciences
- Edição: Volume 101, Nº 10 (2024)
- Páginas: 903-911
- Seção: Articles
- URL: https://cardiosomatics.ru/0004-6299/article/view/647663
- DOI: https://doi.org/10.31857/S0004629924100032
- EDN: https://elibrary.ru/JLWCQA
- ID: 647663
Citar
Resumo
In this article we analyze the properties of the photometric and spectral variability of the young star V718 Per, a member of the cluster IC 348, in terms of its possible binarity. The most realistic is the model where the main component of the system V718 Per A — with an effective temperature of 5200 K — is periodically shielded by two extended dust periods structures consisting of large particles and moving around the star in resonance with two planets. Their orbital periods are 4.7 years and 213 days. Their ratio with high accuracy is 1:8, and the ratio of the large semi-axes is 1:4. The masses of the planets do not exceed 6 МJup. At the moments of total eclipses of V718 Per A, the radiation of the system is dominated by a colder component with an effective temperature of 4150 ± 100 K, which explains the reddening of the star observed in the brightness minima, as well as its spectral changes during brightness weakening. Speckle interferometric observations performed on the 2.5-m telescope of the CMO of SAI MSU made it possible to estimate the upper limit of the angular distance between the components of the system: 0.1′′, which is equivalent to a projection distance of 30 a.u. The unique feature of this system is that the planes of the planetary orbits practically coincide with the line of sight. Such an orientation of the system is most favorable for measuring fluctuations in the radial velocity of a star caused by the orbital motion of planets, as well as for observing planetary transits along the disk of the main component of the system.
Sobre autores
V. Grinin
Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences; St. Petersburg State University
Autor responsável pela correspondência
Email: vgcrao@mail.ru
Sobolev Astronomical Institute
Rússia, St. Petersburg; St. PetersburgB. Safonov
Sternberg Astronomical Institute, Lomonosov Moscow State University
Email: vgcrao@mail.ru
Rússia, Moscow
N. Efimova
Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences
Email: vgcrao@mail.ru
Rússia, St. Petersburg
O. Barsunova
Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences
Email: vgcrao@mail.ru
Rússia, St. Petersburg
I. Strachov
Sternberg Astronomical Institute, Lomonosov Moscow State University
Email: vgcrao@mail.ru
Rússia, Moscow
G. Borman
Crimean Astrophysical Observatory, Russian Academy of Sciences
Email: vgcrao@mail.ru
Rússia, Nauchnyi
S. Shugarov
Sternberg Astronomical Institute, Lomonosov Moscow State University; Astronomical Institute, Slovak Academy of Sciences
Email: vgcrao@mail.ru
Rússia, Moscow; TatranskáLomnica, Slovak Republic
Bibliografia
- R.E. Cohen, W. Herbst, and E.C. Williams, Astrophys. J. 596(2), L243 (2003).
- S. Nordhagen, W. Herbst, E.C. Williams, and E. Semkov, Astrophys. J. 646(2), L151 (2006).
- V.P. Grinin, O.Yu. Barsunova, S.G. Sergeev, N.Ya. Sotnikova, and T.V. Demidova, Astron. Letters 32(12), 827 (2006).
- V.P. Grinin, A.A. Arkharov, O.Yu. Barsunova, and S.G. Sergeev, Astron. Letters 35(12), 828 (2009).
- V. Grinin, H.C. Stempels, G.F. Gahm, S. Sergeev, A. Arkharov, O. Barsunova and L. Tambovtseva, Astron. and Astrophys. 489(3), 1233 (2008).
- K.E. Kearns and W. Herbst, Astron. J. 116(1), 261 (1998).
- C.M. Hamilton, W. Herbst, C. Shih, and A.J. Ferro, Astrophys. J. 554(2), L201 (2001).
- J.N. Winn, M.J. Holman, J.A. Johnson, K.Z. Stanek, and P.M. Garnavich, Astrophys. J. 603(1), L45 (2004).
- I.A. Strakhov, B.S. Safonov, and D.V. Cheryasov, Astrophys. Bull. 78(2), 234 (2023).
- A. Dodin, K. Grankin, S. Lamzin, A. Nadjip, et al., Monthly Not. Roy. Astron. Soc. 482, 5524 (2019).
- D.V. Bisikalo, A.V. Dodin, P.V. Kaigorodov, S.A. Lamzin, E.V. Malogolovets, and A.M. Fateeva, Astron. Rep. 56(9), 686 (2012).
- R.J. White and A.M. Ghez, Astrophys. J. 556(1), 265 (2001).
- A.A. Henden, S. Levine, D. Terrell, and D.L. Welch, AAS Meeting Abstracts 225, id. 336 (2015).
- C.J. Lada, A.A. Muench, K.L. Luhman, L. Allen, et al., Astron. J. 131(3), 1574 (2006).
- T. Currie and S.J. Kenyon, Astron. J. 138(3), 703 (2009).
- H.Y.A. Meng, G.H. Rieke, K.Y.L. Su, and A. Gáspár, Astrophys. J. 836(1), id. 34 (2017).
- E.L. Wright, P.R.M. Eisenhardt, A.K. Mainzer, M.E. Ressler, et al., Astron. J. 140(6), 1868 (2010).
- L.M. Ozernoy, N.N. Gorkavyi, J.C. Mather, and T.A. Taidakova, Astrophys. J. 537(2), L147 (2000).
- T.D. Pearce, H. Beust, V. Faramaz, M Booth, A.V. Krivov, T. Löhne, and P. Poblete, Monthly Not. Roy. Astron. Soc. 503(4), 4767 (2021).
- R. Luger, M. Sestovic, E. Kruse, S.L. Grimm, et al., Nature Astron. 1, id. 0129 (2017).
- C.J. Shallue and A. Vanderburg, Astron. J. 155(2), id. 94 (2018).
- T.J. David, E.A. Petigura, R. Luger, D. Foreman-Mackey, J.H. Livingston, E.E. Mamajek , and L.A. Hillenbrand, Astrophys. J. Letters, 885(1), id. L12 (2019).
Arquivos suplementares
