New look at the structure of the nearest circumstellar environment of the weak-line T tauri star V718 Per

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article we analyze the properties of the photometric and spectral variability of the young star V718 Per, a member of the cluster IC 348, in terms of its possible binarity. The most realistic is the model where the main component of the system V718 Per A — with an effective temperature of 5200 K — is periodically shielded by two extended dust periods structures consisting of large particles and moving around the star in resonance with two planets. Their orbital periods are 4.7 years and 213 days. Their ratio with high accuracy is 1:8, and the ratio of the large semi-axes is 1:4. The masses of the planets do not exceed 6 МJup. At the moments of total eclipses of V718 Per A, the radiation of the system is dominated by a colder component with an effective temperature of 4150 ± 100 K, which explains the reddening of the star observed in the brightness minima, as well as its spectral changes during brightness weakening. Speckle interferometric observations performed on the 2.5-m telescope of the CMO of SAI MSU made it possible to estimate the upper limit of the angular distance between the components of the system: 0.1′′, which is equivalent to a projection distance of 30 a.u. The unique feature of this system is that the planes of the planetary orbits practically coincide with the line of sight. Such an orientation of the system is most favorable for measuring fluctuations in the radial velocity of a star caused by the orbital motion of planets, as well as for observing planetary transits along the disk of the main component of the system.

Sobre autores

V. Grinin

Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences; St. Petersburg State University

Autor responsável pela correspondência
Email: vgcrao@mail.ru

Sobolev Astronomical Institute

Rússia, St. Petersburg; St. Petersburg

B. Safonov

Sternberg Astronomical Institute, Lomonosov Moscow State University

Email: vgcrao@mail.ru
Rússia, Moscow

N. Efimova

Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences

Email: vgcrao@mail.ru
Rússia, St. Petersburg

O. Barsunova

Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences

Email: vgcrao@mail.ru
Rússia, St. Petersburg

I. Strachov

Sternberg Astronomical Institute, Lomonosov Moscow State University

Email: vgcrao@mail.ru
Rússia, Moscow

G. Borman

Crimean Astrophysical Observatory, Russian Academy of Sciences

Email: vgcrao@mail.ru
Rússia, Nauchnyi

S. Shugarov

Sternberg Astronomical Institute, Lomonosov Moscow State University; Astronomical Institute, Slovak Academy of Sciences

Email: vgcrao@mail.ru
Rússia, Moscow; TatranskáLomnica, Slovak Republic

Bibliografia

  1. R.E. Cohen, W. Herbst, and E.C. Williams, Astrophys. J. 596(2), L243 (2003).
  2. S. Nordhagen, W. Herbst, E.C. Williams, and E. Semkov, Astrophys. J. 646(2), L151 (2006).
  3. V.P. Grinin, O.Yu. Barsunova, S.G. Sergeev, N.Ya. Sotnikova, and T.V. Demidova, Astron. Letters 32(12), 827 (2006).
  4. V.P. Grinin, A.A. Arkharov, O.Yu. Barsunova, and S.G. Sergeev, Astron. Letters 35(12), 828 (2009).
  5. V. Grinin, H.C. Stempels, G.F. Gahm, S. Sergeev, A. Arkharov, O. Barsunova and L. Tambovtseva, Astron. and Astrophys. 489(3), 1233 (2008).
  6. K.E. Kearns and W. Herbst, Astron. J. 116(1), 261 (1998).
  7. C.M. Hamilton, W. Herbst, C. Shih, and A.J. Ferro, Astrophys. J. 554(2), L201 (2001).
  8. J.N. Winn, M.J. Holman, J.A. Johnson, K.Z. Stanek, and P.M. Garnavich, Astrophys. J. 603(1), L45 (2004).
  9. I.A. Strakhov, B.S. Safonov, and D.V. Cheryasov, Astrophys. Bull. 78(2), 234 (2023).
  10. A. Dodin, K. Grankin, S. Lamzin, A. Nadjip, et al., Monthly Not. Roy. Astron. Soc. 482, 5524 (2019).
  11. D.V. Bisikalo, A.V. Dodin, P.V. Kaigorodov, S.A. Lamzin, E.V. Malogolovets, and A.M. Fateeva, Astron. Rep. 56(9), 686 (2012).
  12. R.J. White and A.M. Ghez, Astrophys. J. 556(1), 265 (2001).
  13. A.A. Henden, S. Levine, D. Terrell, and D.L. Welch, AAS Meeting Abstracts 225, id. 336 (2015).
  14. C.J. Lada, A.A. Muench, K.L. Luhman, L. Allen, et al., Astron. J. 131(3), 1574 (2006).
  15. T. Currie and S.J. Kenyon, Astron. J. 138(3), 703 (2009).
  16. H.Y.A. Meng, G.H. Rieke, K.Y.L. Su, and A. Gáspár, Astrophys. J. 836(1), id. 34 (2017).
  17. E.L. Wright, P.R.M. Eisenhardt, A.K. Mainzer, M.E. Ressler, et al., Astron. J. 140(6), 1868 (2010).
  18. L.M. Ozernoy, N.N. Gorkavyi, J.C. Mather, and T.A. Taidakova, Astrophys. J. 537(2), L147 (2000).
  19. T.D. Pearce, H. Beust, V. Faramaz, M Booth, A.V. Krivov, T. Löhne, and P. Poblete, Monthly Not. Roy. Astron. Soc. 503(4), 4767 (2021).
  20. R. Luger, M. Sestovic, E. Kruse, S.L. Grimm, et al., Nature Astron. 1, id. 0129 (2017).
  21. C.J. Shallue and A. Vanderburg, Astron. J. 155(2), id. 94 (2018).
  22. T.J. David, E.A. Petigura, R. Luger, D. Foreman-Mackey, J.H. Livingston, E.E. Mamajek , and L.A. Hillenbrand, Astrophys. J. Letters, 885(1), id. L12 (2019).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024