Gas-Dynamical Model of Accretion on a Neutron Star with Viscosity and the Influence of Large-Scale Vortices on the Transmission of Angular Momentum

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the construction of a gas-dynamic model of the accretion disk around a neutron star (NS). The developed multidimensional code is used to study the stability of stationary axially symmetrical models by carry out of evolutionary calculations in 3D taking into account viscosity, as well as taking into account the diffusion of radiation in 2D. It is shown that an arbitrary stationary axially symmetrical disk with a monotonic decrease in density with a cylindrical radius transforms, due to viscosity, braking and spreading of matter along the NS, into a new quasi-stationary toroidal configuration. The stability study of the stationary toroidal configuration confirmed the formation of large-scale vortex structures at the initial periodic disturbance of angular velocity in azimuth, now taking into account the “turbulent” viscosity. It turned out that the presence of large-scale structures leads to an acceleration of braking, i. e. an effective increase in viscosity.

作者简介

A. Aksenov

Institute of Design Automation of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aksenov@fastmail.fm
俄罗斯联邦, Moscow

V. Chechetkin

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: aksenov@fastmail.fm
俄罗斯联邦, Moscow

参考

  1. K. Nomoto and M. Hashimoto, Phys. Rep. 163(1–3), 13 (1988).
  2. S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars. The physics of compact objects (New York: Wiley, 1983).
  3. L. D. Landau and E. M. Lifshitz, Statistical physics (Oxford: Pergamon Press, 1980).
  4. Y. P. Velikhov, A. Y. Lugovsky, S. I. Mukhin, Y. P. Popov, and V. M. Chechetkin, Astron. Rep. 51(2), 154 (2007).
  5. A. Y. Lugovskii and V. M. Chechetkin, Astron. Rep. 56(2), 96 (2012).
  6. E. P. Kurbatov, D. V. Bisikalo, and P. V. Kaygorodov, Physics Uspekhi 57(8), 787 (2014), arXiv:1409.8492 [astro-ph.SR].
  7. P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).
  8. L. D. Landau and E. M. Lifshits, Fluid Mechanics. Course of Theoretical Physics (New York: Pergamon, 1987).
  9. P. K. Raschewski, Riemannsche Geometrie und Tensor-analysis (Frankfurt am Main: Verlag Harri Deutsch, 1995), 2nd ed.
  10. G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory (Cambridge University Press, 2017).
  11. A. G. Aksenov and V. M. Chechetkin, The Physics of Supernovae and Their Mathematical Models (World Scientific Publishing Company, 2024).
  12. P. Colella and H. M. Glaz, J. Comput. Phys. 59, 264 (1985).
  13. A. G. Aksenov, Comp. Math. and Math. Physics 55(10), 1752 (2015).
  14. V. D. Shafranov, Reviews of Plasma Physics. Vol. 3, edited by M. A. Leontovich (New York: Published by Consultants Bureau, 1967), p. 1.
  15. A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Math. Models Computer Simulations 11, 360 (2019).
  16. G. S. Bisnovatyi-Kogan and R. V. E. Lovelace, New Astron. Rev. 45, 663 (2002), arXiv:astro-ph/0207625.
  17. N. I. Shakura, Soviet Astron. 16(4), 756 (1973).
  18. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
  19. N. A. Inogamov and R. A. Sunyaev, Astron. Letters 25(5), 269 (1999), arXiv:astro-ph/9904333.
  20. Y. V. Artemova, G. S. Bisnovatyi-Kogan, I. V. Igumenshchev, and I. D. Novikov, 637, 968 (2006), arXiv:astro-ph/0410249.
  21. P. Ghosh and F. K. Lamb, 234, 296 (1979).
  22. M. V. Abakumov, S. I. Mukhin, Y. P. Popov, and V. M. Chechetkin, Astron. Rep. 40(5), 366 (1996).
  23. M. R. Gilfanov and R. A. Sunyaev, Physics Uspekhi 57, 377 (2014).

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2024