Повышение углового разрешения и дальности действия измерительных систем, использующих сверхширокополосные сигналы
- Авторы: Лаговский Б.А.1, Рубинович Е.Я2
- 
							Учреждения: 
							- Российский технологический университет
- Институт проблем управления им. В.А. Трапезникова РАН
 
- Выпуск: № 10 (2023)
- Страницы: 72-90
- Раздел: Тематический выпуск
- URL: https://cardiosomatics.ru/0005-2310/article/view/646725
- DOI: https://doi.org/10.31857/S0005231023100070
- EDN: https://elibrary.ru/XVLKSX
- ID: 646725
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрена задача получения трехмерных радиоизображений объектов с повышенным разрешением на основе применения сверхширокополосных импульсных сигналов и новых методов их цифровой обработки. Численно решена обратная задача восстановления изображения источника сигналов с разрешением, превышающим критерий Рэлея. Математически задача сводится к решению интегрального уравнения Фредгольма первого рода численными методами, основанными на представлении решения в виде разложения по системам ортогональных функций. Обоснован метод выбора систем используемых функций, повышающий устойчивость решений. Решены вариационные задачи оптимизации формы и длительности сверхширокополосных импульсов, обеспечивающие максимально возможное отношение сигнал/шум при локационных исследованиях объектов с полностью или частично известными характеристиками отражения сигналов. Предлагаемые процедуры позволяют увеличить дальность действия измерительных систем, а также дают возможность повысить устойчивость решений обратных задач. Показано, что привлечение развиваемых методов достижения сверхразрешения к обработке сверхширокополосных сигналов резко улучшает качество 3D-изображений объектов в радиодиапазоне.
Ключевые слова
Об авторах
Б. А. Лаговский
Российский технологический университет
														Email: robertlag@yandex.ru
				                					                																			                												                								Москва						
Е. Я Рубинович
Институт проблем управления им. В.А. Трапезникова РАН
							Автор, ответственный за переписку.
							Email: rubinvch@gmail.com
				                					                																			                												                								Москва						
Список литературы
- Odendaal W., Barnard E., Pistorius C.W.I. Two Dimensional Superresolution Radar Imaging Using the MUSIC Algorithm // IEEE Trans. 1994. Vol. AP-42. No. 10. P. 1386-1391. https://doi.org/10.1109/8.320744
- Waweru N.P., Konditi D.B.O., Langat P.K. Performance Analysis of MUSIC Root- MUSIC and ESPRIT DOA Estimation Algorithm // Int. J. Electrical Computer Energetic Electronic and Communication Engineering. 2014. Vol. 08. No. 01. P. 209-216.
- Yuebo Zha, Yulin Huang, Jianyu Yang. An Iterative Shrinkage Deconvolution for Angular Super-Resolution Imaging in Forward-Looking Scanning Radar // Progress 88 In Electromagnetics Research B., 2016. V. 65. P. 35-48. https://doi.org/10.2528/PIERB15100501
- Almeida M.S., Figueiredo M.A. Deconvolving images with unknown boundaries using the alternating direction method of multipliers // IEEE Trans. Image Process. 2013. Vol. 22. No. 8. P. 3074-3086.
- Dudik M., Phillips S.J., Schapire R.E. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling // J. Machine Learning Research. 2007. Vol. 8. P. 1217-1260.
- Stoica P., Sharman K.C. Maximum likelihood methods for direction-of-arrival estimation // IEEE Trans. on Acoustics, Speech and Signal Processing. 1990. No. 38(7). P. 1132-1143.
- Geiss A., Hardin J.C. Radar super resolution using a deep convolutional neural network // Journal of Atmospheric and Oceanic Technology. 2020. Vol. 37. No. 12. P. 2197-2207.
- Ramani S., Liu Z., Rosen J., Nielsen J., Fessler J.A. Regularization parameter for nonlinear iterative image restoration and MRI selection reconstruction using GCV and SURE- based methods // IEEE Trans. on Image Processing. 2012. V. 21. No. 8. P. 3659-3672.
- Morse P., Feshbach H. Methods of Theoretical Physics. McGraw-Hill Science/Engineering/ Math. 1953.
- Lagovsky B.A., Rubinovich E.Y. Algebraic methods for achieving super-resolution by digital antenna arrays // Mathematics. 2023. V. 11. No. 4. P. 1-9. https://doi.org/10.3390/math11041056
- Lagovsky B.A., Samokhin A.B., Shestopalov Y.V. Angular Superresolution Based on A Priori Information. Radio Science. 2021. V. 56. No. 1. 2021. P. 1-11. https://doi.org/10.1029/2020RS007100
- Лаговский Б.А. Угловое сверхразрешение в двумерных задачах радиолокации // Радиотехника и электроника. 2021. Т. 66. № 9. C. 853-858. https://doi.org/10.31857/S0033849421090102
- Лаговский Б.А., Рубинович Е.Я. Алгоритмы цифровой обработки данных измерений, обеспечивающие угловое сверхразрешение // Мехатроника, автоматизация, управление. 2021. Т. 22. № 7. С. 349-356. https://doi.org/10.17587/mau.22.349-356
- Калинин В.И., Чапурский В.В., Черепенин В.А. Сверхразрешение в системах радиолокации и радиоголографии на основе MIMO антенных решеток с рециркуляцией сигналов // Радиотехника и электроника. 2021. T. 66. № 6. С. 614-624. https://doi.org/10.31857/s0033849421060139
- Щукин А.А., Павлов А.Е. Параметризация пользовательских функций в цифровой обработке сигналов для получения углового сверхразрешения // Russian Technological Journal. 2022. № 10(4). С. 38-43. https://doi.org/10.32362/2500-316X-2022-10-4-38-43
- Lagovsky B.A., Samokhin A.B. Superresolution in signal processing using a priori information // IEEE Conf. Publications International Conference Electromagnetics in Advanced Applications (ICEAA). Italy. 2017. P. 779-783. https://doi.org/10.1109/ICEAA.2017. 8065365
- Dong J., Li Y., Guo Q., Liang X. Through-wall moving target tracking algorithm in multipath using UWB radar // IEEE Geosci. Remote Sens. Lett. 2021. P. 1-5. https://doi.org/10.1109/ lgrs.2021.3050501
- Khan H.A., Edwards D.J., Malik W.Q. Ultra wideband MIMO radar // Proc. IEEE Intl. Radar Conf. Arlington, VA, USA, 2005. 9 May 2005.
- Zhou Yuan, Law Choi Look, Xia Jingjing. Ultra low-power UWB-RFID system for precise location-aware applications // 2012 IEEE Wireless Communications and Networking Conference. Workshops (WCNCW). 2012. P. 154-158.
- Taylor J.D. Ultra-wideband Radar Technology. CRC Press Boca Raton, London, New Work, Washington. 2000.
- Holami G., Mehrpourbernety H., Zakeri B. UWB Phased Array Antennas for High Resolution Radars // Proc. of the 2013 International Symp. on Electromagnetic Theory, 2013. P. 532-535.
- Lagovsky B.A., Samokhin A.B., Shestopalov Y.V. Pulse Characteristics of Antenna Array Radiating UWB Signals // Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP 2016). Davos, Switzerland. 2016. P. 2479-2482. https://doi.org/10.1109/EuCAP.2016.7481624
- Lagovsky B.A., Samokhin A.B., Shestopalov Y.V. Increasing accuracy of angular measurements using UWB signals. 2017 11th European Conference on Antennas and Propagation (EUCAP) // IEEE Conf. Publications. Paris. 2017. P. 1083-1086. https://doi.org/10.23919/EuCAP.2017.7928204
- Anis R., Tielert M. Design of UWB pulse radio transceiver using statistical correlation technique in frequency domain // Advances in Radio Science. 2007. V. 5. P. 297-304. https://doi.org/10.5194/ars-5-297-2007
- Niemela V., Haapola J., Hamalainen M., Iinatti J. An ultra wideband survey: Global regulations and impulse radio research based on standards // IEEE Communications Surveys and Tutorials. 2016. V. 19. No. 2. P. 874-890. https://doi.org/10.1109/COMST.2016.2634593
- Barrett T. History of UWB Radar and Communications: Pioneers and Innovators // Progress in Electromagnetics Symposium (PIERS) 2000. Microwave Journ, January 2001.
- Дмитриев А.С., Ефремова Е.В., Кузьмин Л.В. Генерация последовательности хаотических импульсов при воздействии периодического сигнала на динамическую систему // Письма в ЖТФ. 2005. Т. 31. № 22. С. 29. https://doi.org/10.1134/S1064226906050093
- Yang D., Zhu Z., Liang B. Vital sign signal extraction method based on permutation entropy and EEMD algorithm for ultra-wideband radar // IEEE Access. 2019. V. 7. https://doi.org/10.1109/ACCESS.2019.2958600
- Вендик О.Г. Антенны с немеханическим движением луча. М.: Советское Радио, 1965.
- Ватсон Г.Н. Теория бесселевых функций / пер. со 2-го англ. изд. /М.: ИЛ, 1947.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

