Метод автоматического позиционирования беспилотных аппаратов на основе распознавания сигнальных радиально-симметричных маркеров подводных целей
- Авторы: Шакирзянов Р.М1, Шлеймович М.П.1, Новикова С.В.1,2
- 
							Учреждения: 
							- Казанский национальный исследовательский технический университет им. А.Н. Туполева
- Мордовский государственный университет им. Н.П. Огарева
 
- Выпуск: № 7 (2023)
- Страницы: 93-120
- Раздел: Интеллектуальные системы управления, aнализ данных
- URL: https://cardiosomatics.ru/0005-2310/article/view/646755
- DOI: https://doi.org/10.31857/S0005231023070061
- EDN: https://elibrary.ru/FDNZDT
- ID: 646755
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Описывается метод автоматического распознавания целевых точек траекторий беспилотных аппаратов, перемещающихся под водой, таких как автономные подводные аппараты и летающие подводные аппараты самолетоподобных конструкций. В качестве терминальной точки управления рассматривается координата центра объекта, обладающего свойствами радиальной симметрии. Предложен метод построения многомасштабной весовой модели изображения на основе разработанного преобразования быстрой радиальной симметрии и метода Хафа, что обеспечивает устойчивость к шумам и высокую скорость вычисления координат искомой точки. Для случая, когда объект интереса задан контуром определенного цвета, предложена модель на основе хроматической и весовой составляющих. В качестве примера детектирования приведен алгоритм обнаружения базовой подводной станции со световыми маркерами в виде сигнального люминесцирующего кольца.
Ключевые слова
Об авторах
Р. М Шакирзянов
Казанский национальный исследовательский технический университет им. А.Н. Туполева
														Email: rmshakirzyanov@kai.ru
				                					                																			                												                								Казань						
М. П. Шлеймович
Казанский национальный исследовательский технический университет им. А.Н. Туполева
														Email: mpshleymovich@kai.ru
				                					                																			                												                								Казань						
С. В. Новикова
Казанский национальный исследовательский технический университет им. А.Н. Туполева;Мордовский государственный университет им. Н.П. Огарева
							Автор, ответственный за переписку.
							Email: svnovikova@kai.ru
				                					                																			                												                								Казань						
Список литературы
- Liguo T., Shenmin S., Xiaoyan Y., Jianwen S. An overview of marine recovery methods of UAV for small ships // J. Harbin Institute Technol. 2019. V. 51. No. 10. P. 1-10.
- Chamola V., Kotesh P., Agarwal A., Naren, Gupta N., Guizani M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques // Ad Hoc Networks. 2021. V. 111. P. 102324. https://doi.org/10.1016/j.adhoc.2020.102324
- ГОСТ Р 56829-2015 Интеллектуальные транспортные системы. Термины и определения, ГОСТ Р от 10 декабря 2015 года № 56829-2015.
- Albeaino G., Gheisari M., Franz B. A Systematic Review of Unmanned Aerial Vehicle Application Areas and Technologies in the AEC Domain // J. of Inform. Technol. Construct. 2019. V. 24. P. 381-405.
- Hajiyev C., Soken H.E., Vural S.V. Navigation Systems for Unmanned Aerial Vehicles // State Estimation and Control for Low-cost Unmanned Aerial Vehicles. 2015. P. 25-49. https://doi.org/10.1007/978-3-319-16417-5_3
- Moiseev V.S., Shafigullin R.R., Gushchina D.S. Rational Placement and Required Number of Information Unmanned Aerial Systems for On-Line Monitoring of Large Territories // Russian Aeronautics. 2012. V. 55. P. 223-229. https://doi.org/10.3103/S1068799812030014
- Neira J., Sequeiros C., Huaman R., Machaca E., Fonseca P., Nina W. Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control // J. Robot. 2021. P. 1-26. https://doi.org/10.1155/2021/5542920
- Колесников М.П., Мартынова Л.А., Пашкевич И.В., Шелест П.С. Метод позиционирования автономного необитаемого подводного аппарата в процессе приведения к причальному устройству // Изв. ТулГУ. Технические науки. 2015. № 11-2. C. 38-49.
- Qiu S., Cui W. An Overview on Aquatic Unmanned Aerial Vehicles // Ann. Rev. Res. 2019. V. 5. No. 3. P. 555663. https://doi.org/10.19080/ARR.2019.05.555663
- Popescu D., Ichim L. Image Recognition in UAV Application Based on Texture Analysis // Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science. 2015. V. 9386. https://doi.org/10.1007/978-3-319-25903-1_60
- Samadzadegan F., Dadrass Javan F., Ashtari Mahini F., Gholamshahi M. Detection and Recognition of Drones Based on a Deep Convolutional Neural Network Using Visible Imagery // Aerospace. 2022. V. 9. No. 1. P. 31. https://doi.org/10.3390/aerospace9010031
- Fujiyoshi H., Hirakawa T., Yamashita T. Deep Learning-Based Image Recognition for Autonomous Driving // IATSS Res. 2019. V. 43. No. 1. P. 244-252. https://doi.org/10.1016/j.iatssr.2019.11.008
- Севостьянов И.Е., Девитт Д.В. Система визуального позиционирования многороторных беспилотников для совершения высокоточной автономной посадки // Science Time. 2021. № 90. C. 38-42.
- Степанов Д.Н. Методы и алгоритмы определения положения и ориентации беспилотного летательного аппарата с применением бортовых видеокамер // Программные продукты и системы. 2014. № 1. С. 150-157.
- Deltheil C., Didier L., Hospital E., Brutzman D.P. Simulating an Optical Guidance System for the Recovery of an Unmanned Underwater Vehicle // IEEE J. Ocean. Engineer. 2000. V. 25. No. 4. P. 568-574. https://doi.org/10.1109/48.895364
- Guo D., Bacciaglia A., Simpson M., Bil C., Marzocca P. Design and Development a Bimodal Unmanned System // AIAA Scitech 2019 Forum. 2019. P. 1-7. https://doi.org/10.2514/6.2019-2096
- Pinheiro P.M., Neto A.A., Grando R.B., Silva C.B. da, Aoki Vivian M., Cardoso D.S., Horn A.C., Drews P.L.J. Trajectory Planning for Hybrid Unmanned Aerial Underwater Vehicles with Smooth Media Transition // J. Intelligent Robot. Syst. 2022. V. 104. No. 46. https://doi.org/10.1007/s10846-021-01567-z
- Lock R.J., Vaidyanathan R., Burgess S.C., Loveless J. Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles through Empirical and Numerical Modelling of the Common Guillemot, Uria Aalge // Bioinspirat. Biomimetics. 2010. V. 5. No. 4. P. 1-15. https://doi.org/10.1088/1748-3182/5/4/046001
- Wu Y., Li L., Su X., Gao B. Dynamics Modeling and Trajectory Optimization for Unmanned Aerial-Aquatic Vehicle Diving into the Water // Aerospace Sci. Technol. 2019. V. 89. P. 220-229. https://doi.org/10.1016/j.ast.2019.04.004
- Liu S., Ozay M., Okatani T., Xu H., Sun K., Lin Y. Detection and Pose Estimation for Short-Range Vision-Based Underwater Docking // IEEE Access. 2019. V. 30. No. 7. P. 2720-2749. https://doi.org/10.1109/ACCESS.2018.2885537
- Cowen S., Briest S., Dombrowski J. Underwater Docking of Autonomous Undersea Vehicles Using Optical Terminal Guidance // Oceans '97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada. 1997. V. 2. P. 1143-1147. https://doi.org/10.1109/OCEANS.1997.624153
- Negre A., Pradalier C., Dunbabin M. Robust Vision-Based Underwater Homing Using Self-Similar Landmarks // J. Field Robot. 2008. V. 25. No. 6-7. P. 360-377. https://doi.org/10.1002/rob.20246
- Ghosh S., Ray R., Vadali S.R.K., Shome S.N., Nandy S. Reliable Pose Estimation of Underwater Dock Using Single Camera: A Scene Invariant Approach // Machine Vision Appl. 2016. V. 27. No. 2. P. 221-236. https://doi.org/10.1007/s00138-015-0736-4
- Li Y., Jiang Y., Cao J., Wang B., Li Y. AUV Docking Experiments Based on Vision Positioning Using Two Cameras // Ocean Engineer. 2015. V. 110. P. 163-173.
- Чичкарев Е., Сергиенко А., Балалаева Е. Использование моделей машинного обучения и сетей глубокого обучения для распознавания рукописных чисел и букв русского и латинского алфавитов // InterConf. Prague, Czech Republic. 2021. P. 363-380. https://doi.org/10.51582/interconf.21-22.11.2021.044
- Сирота А.А., Митрофанова Е.Ю., Милованова А.И. Анализ алгоритмов поиска объектов на изображениях с использованием различных модификаций сверточных нейронных сетей // Вестник ВГУ. Серия: Системный анализ и информационные технологии. 2019. № 3. С. 123-137. https://doi.org/10.17308/sait.2019.3/1313
- Zou Z., Shi Z., Guo Y., Ye J. Object Detection in 20 Years: A Survey // Proceedings of the IEEE. 2019. No. 111. P. 257-276.
- Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука, Физматлит, 1998.
- Gonzalez R.C., Woods R.E. Digital Image Processing. Third Edition. London: Pearson, 2007.
- Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // 2nd International Conference on High-Energy Accelerators and Instrumentation, HEACC 1959. CERN, Geneva, Switzerland. 1959. P. 554-558.
- Lyasheva S., Shleymovich M., Shakirzyanov R. The Image Analysis Using Fast Radial Symmetry Transform in Control Systems Base on the Computer Vision // International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon. 2019. P. 1-6. https://doi.org/10.1109/FarEastCon.2019.8934298
- Shakirzyanov R.M. Detection of Traffic Signals Using Color Segmentation and a Radial Symmetry Detector // Bulletin of the Voronezh State Technical University. 2020. V. 16. No. 6. P. 25-33.
- Adelson E., Burt P., Anderson C., Ogden J.M., Bergen J. Pyramid Methods in Image Processing // RCA Engineer. 1984. V. 29. No. 6. P. 33-41.
- O'Malley R., Jones E., Glavin M. Rear-Lamp Vehicle Detection and Tracking in Low-Exposure Color Video for Night Conditions // IEEE Transactions on Intelligent Transportation Systems. 2010. V. 11. No. 2. P. 453-462. https://doi.org/10.1109/TITS.2010.2045375
- Друки А.А. Алгоритмы выделения лиц на статических RGB изображениях и в видеопотоке // Изв. ТПУ. 2012. № 5. С. 65-69.
- Darge A., Rajendran R.S., Zerihum D., Chung P.Y.K. Multi Color Image Segmentation using L*A*B* Color Space // Int. J. Advanced Engineer., Management Sci. 2019. V. 5. P. 346-352. https://doi.org/10.22161/ijaems.5.5.8
- Forsyth D., Ponce J.Computer Vision: A Modern Approach. London: Pearson, 2012.
- Droogenbroeck V.M., Barnich O. Design of Statistical Measures for the Assessment of Image Segmentation Schemes // Proceedings of 11th International Conference on Computer Analysis of Images and Patterns (CAIP2005), Lecture Notes in Computer Science. Rocancourt, France, 2005. V. 3691. P. 280-287.
- Кольцов П.П., Осипов А.С., Куцаев А.С., Кравченко А.А., Котович Н.В., Захаров А.В. О количественной оценке эффективности алгоритмов анализа изображений // Компьютерная оптика. 2015. Т. 39, № 4. С. 542-556.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

