Решение обратной кинематической задачи для пятиподвижного манипулятора гибридной структуры
- Авторы: Антонов А.В1, Фомин А.С1
- 
							Учреждения: 
							- Институт машиноведения им. А.А. Благонравова РАН
 
- Выпуск: № 3 (2023)
- Страницы: 106-125
- Раздел: Управление в технических системах
- URL: https://cardiosomatics.ru/0005-2310/article/view/646789
- DOI: https://doi.org/10.31857/S0005231023030054
- EDN: https://elibrary.ru/ZZBRNY
- ID: 646789
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Управление любой робототехнической системой невозможно реализовать без предварительного решения обратной кинематической задачи, состоящей в определении законов управления приводами, требуемых для реализации заданной траектории движения и закладываемых в систему управления. Настоящая статья посвящена решению обратной кинематической задачи для пятиподвижного манипулятора гибридной (параллельно-последовательной) структуры. После краткого описания структуры манипулятора, включающей трехподвижную параллельную и двухподвижную последовательную части и обеспечивающей выходному звену три вращательные и две поступательные степени свободы, в статье подробно изложен алгоритм решения обратной задачи. Алгоритм основан на представлении манипулятора в виде эквивалентной системы последовательной структуры и последующем использовании формулы произведения матричных экспонент. Предлагаемый алгоритм позволяет получить решение в аналитическом виде без каких-либо допущений на геометрию манипулятора; рассмотренный пример подтверждает работоспособность алгоритма. Методика решения обратной задачи может быть также адаптирована к анализу других манипуляторов гибридной структуры.
Об авторах
А. В Антонов
Институт машиноведения им. А.А. Благонравова РАН
														Email: antonov.av@imash.ru
				                					                																			                												                								Москва						
А. С Фомин
Институт машиноведения им. А.А. Благонравова РАН
							Автор, ответственный за переписку.
							Email: alexey-nvkz@mail.ru
				                					                																			                												                								Москва						
Список литературы
- Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: Wave and additive technologies, the machine tool industry, and robot surgery // J. Mach. Manuf. Reliab. 2018. Vol. 47. P. 399-406. https://doi.org/10.3103/S1052618818050059
- Wen K., Harton D., Lalibert'e T., Gosselin C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper // Proc. 2019 IEEE Inter. Conf. Robotics and Automation. Montreal, QC, Canada, 20-24 May 2019. P. 1672-1678. https://doi.org/10.1109/ICRA.2019.8793772
- Liu Q., Huang T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation // Robot.Comp.Integ. Manuf. 2019. Vol. 56. P. 140-148. https://doi.org/10.1016/j.rcim.2018.06.003
- Carbone G., Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator // Robotica. 2004. Vol. 22. No. 5. P. 567-576. https://doi.org/10.1017/S0263574704000323
- Lai Y.-L., Liao C.-C., Chao Z.-G. Inverse kinematics for a novel hybrid parallel-serial five-axis machine tool // Robot.Comp.Integ. Manuf. 2018. Vol. 50. P. 63-79. https://doi.org/10.1016/j.rcim.2017.09.002
- Oba Y., Kakinuma Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine // Prec. Eng. 2017. Vol. 49. P. 24-32. https://doi.org/10.1016/j.precisioneng.2017.01.006
- Waldron K.J., Raghavan M., Roth B. Kinematics of a hybrid series-parallel manipulation system // J. Dyn. Sys., Meas., Control. 1989. Vol. 111. No. 2. P. 211-221. https://doi.org/10.1115/1.3153039
- Cheng H.H. Real-time manipulation of a hybrid serial-and-parallel-driven redundant industrial manipulator // J. Dyn. Sys., Meas., Control. 1994. Vol. 116. No. 4. P. 687-701. https://doi.org/10.1115/1.2899268
- Lynch K.M., Park F.C. Modern robotics: Mechanics, planning, and control. Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239
- Tang Z., Payandeh S. Design and modeling of a novel 6 degree of freedom haptic device // Proc. 3rd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/WHC.2009.4810891
- Yan C., Gao F., Zhang Y. Kinematic modeling of a serial-parallel forging manipulator with application to heavy-duty manipulations // Mech. Based Des. Struct. Mach. 2010. Vol. 38. No. 1. P. 105-129. https://doi.org/10.1080/15397730903455344
- Sun P., Li Y.B., Wang Z.S., Chen K., Chen B., Zeng X., Zhao J., Yue Y. Inverse displacement analysis of a novel hybrid humanoid robotic arm // Mech. Mach. Theory. 2020. Vol. 147. P. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743
- Yang G., Chen W., Ho E.H.L. Design and kinematic analysis of a modular hybrid parallel-serial manipulator // Proc. 7th Inter. Conf. on Control, Automation, Robotics and Vision. Singapore, 2-5 December 2002. Vol. 1. P. 45-50. https://doi.org/10.1109/ICARCV.2002.1234788
- Tang C., Zhang J., Cheng S. Kinematics analysis for a hybrid robot in minimally invasive surgery // Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/ROBIO.2009.5420534
- Lee M.K., Park K.W., Choi B.O. Kinematic and dynamic models of hybrid robot manipulator for propeller grinding // J. Robot. Sys. 1999. Vol. 16. No. 3. P. 137-150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V
- Pisla D., Gherman B., Vaida C., Suciu M., Plitea N. An active hybrid parallel robot for minimally invasive surgery // Robot.Comp.Integ. Manuf. 2013. Vol. 29. No. 4. P. 203-221. https://doi.org/10.1016/j.rcim.2012.12.004
- Hu B., Shi Y., Xu L., Bai P. Reconsideration of terminal constraint/mobility and kinematics of 5-DOF hybrid manipulators formed by one 2R1T PM and one RR SM // Mech. Mach. Theory. 2020. Vol. 149. P. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837
- Ye H., Wang D., Wu J., Yue Y., Zhou Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining // Robot. Comp. Integ. Manuf. 2020. Vol. 65. P. 101961. https://doi.org/10.1016/j.rcim.2020.101961
- L'opez-Custodio P.C., Fu R., Dai J.S., Jin Y. Compliance model of Exechon manipulators with an offset wrist // Mech. Mach. Theory. 2022. Vol. 167. P. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558
- Antonov A., Fomin A., Glazunov V., Kiselev S., Carbone G. Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator // Int. J. Adv. Robot. Sys. 2021. Vol. 18. No. 2. P. 2963. https://doi.org/10.1177/1729881421992963
- Gosselin C., Schreiber L.-T. Redundancy in parallel mechanisms: A review // Appl. Mech. Rev. 2018. Vol. 70. No. 1. P. 010802. https://doi.org/10.1115/1.4038931
- Waldron K.J., Schmiedeler J. Kinematics // Springer Handbook of Robotics. Cham: Springer, 2016. P. 11-36. https://doi.org/10.1007/978-3-319-32552-1_2
- Liu S., Qiu Z., Zhang X. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator // Mech. Mach. Theory. 2017. Vol. 107. P. 166-182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004
- Murray R.M., Li Z., Sastry S.S. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

