О ПРЕОБРАЗОВАНИИ СТАЦИОНАРНОГО НЕЧЕТКО СЛУЧАЙНОГО ПРОЦЕССА ЛИНЕЙНОЙ ДИНАМИЧЕСКОЙ СИСТЕМОЙ
- Авторы: ХАЦКЕВИЧ В.Л1
- 
							Учреждения: 
							- Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина
 
- Выпуск: № 4 (2024)
- Страницы: 94-111
- Раздел: Стохастические системы
- URL: https://cardiosomatics.ru/0005-2310/article/view/646931
- DOI: https://doi.org/10.31857/S0005231024040063
- EDN: https://elibrary.ru/ZGLBSF
- ID: 646931
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Вданной работе изучены стационарные случайные процессы с нечеткими состояниями. Установлены свойства их числовых характеристик – нечетких ожиданий, ожиданий и ковариационных функций. Обосновано спектральное представление ковариационной функции – обобщенная теорема Винера–Хинчина. Основное внимание уделено задаче о преобразовании стационарного нечетко случайного процесса (сигнала) линейной динамической системой. Получены формулы, связывающие нечеткие ожидания (и ожидания) входных и выходных стационарных нечетко случайных процессов. Разработан и обоснован алгоритм вычисления ковариационной функции стационарного нечетко случайного процесса на выходе линейной динамической системы по ковариационной функции стационарного входного нечетко случайного процесса. Полученные результаты опираются на свойства нечетко случайных величин и числовых случайных процессов. Вкачестве примеров рассмотрены треугольные нечетко случайные процессы.
			                Об авторах
В. Л ХАЦКЕВИЧ
Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина
														Email: vlkhats@mail.ru
				                					                																			                								д-р техн. наук, профессор				                								Воронеж, Россия						
Список литературы
- Аверкин А.Н. Нечеткие множества в моделях управления и искусственного интеллекта. М.: Наука, 1986. 312 с.
- Пегат А. Нечеткое моделирование и управление. М.: БИНОМ, 2015. 798 с.
- Puri M.L., Ralescu D.A. Fuzzy random variables // J. Math. Anal. Appl. 1978. V. 64. P. 409–422.
- Feng Y., Hu. L., Shu H. The variance and covariance of fuzzy random variables // Fuzzy Sets Syst. 2001. V. 120, I. 2. P. 487–497. https://doi.org/10.1016/S0165-0114(99)00060-3
- Шведов А.С. Оценивание средних и ковариаций нечетко случайных величин // Прикладная эконометрика. 2016. № 42. С. 121–138.
- Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и их инженерные приложения. М.: Кнорус, 2016. 439 с.
- Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: ФИЗМАТЛИТ, 2005. 400 с.
- Хацкевич В.Л. О непрерывных случайных процессах с нечеткими состояниями // А и Т. 2023. № 7. С. 23–40.
- Деменков Н.П., Микрин Е.А., Мочалов И.А. Марковские процессы с нечеткими состояниями // Информационные технологии. 2020. Т. 26. № 6. С. 323–334.
- Вилков В.Б., Кальницкий В.С., Молоков И.Е. Нечеткие системы массового обслуживания: монография. СПб.: Астерион, 2022. 184 с.
- Zaki N.H.M., Saliman A.N., Abdullah N.A., et. al. Comparison of Queuing Performance Using Queuing Theory Model and Fuzzy Queuing Model at Check-in Counter in Airport // Math. Stat. 2019. No. 7(4A). P. 17–23. https://doi.org/10.13189/ms.2019.070703
- Usha Prameela K., Wurmbrand R., Jayakar R.P.S. An Interpretation of NonPreemptive Priority Fuzzy Queuing Model with symmetrical Service Rates // Pak. J. Stat. Oper. Res. 2021. V. 17. No. 4. P. 791–797. https://doi.org/10.18187/pjsor.v17i4.3878
- Liu Y., Zhu Q., Fan X. Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Time-delay Systems // Fuzzy Sets Syst. 2023. V. 452. I. C. P. 42–60. https://doi.org/10.1007/s11071-021-06633-7
- Shen H., Wu J., Li F., Chen X., Wang J. Fuzzy multi-objective fault-tolerant control for nonlinear Markov jump singularly perturbed systems with persistent dwell-time switched transition probabilities // Fuzzy Sets Syst. 2023. V. 452. I. C. P. 131–148. https://doi.org/10.1016/j.fss.2022.03.020
- Dubois D., Prade H. The mean value of fuzzy number // Fuzzy Sets Syst. 1987. V. 24. No. 3. P. 279–300.
- Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высш. шк. 2003. 479 с.
- Язенин А.В. Основные понятия теории возможностей. М.: Физматлит, 2016. 144 с.
- Хацкевич В.Л. О некоторых свойствах нечетких ожиданий и нелинейных нечетких ожиданий нечетко случайных величин // Известия вузов. Математика. 2022. № 11. С. 97–109. https://doi.org/10.26907/0021-3446-2022-11-97-109
- Seikkala S. On the fuzzy initial value problem // Fuzzy Sets Syst. 1987. V. 24. No. 3. P. 319–330.
- Puri M.L., Ralescu D.A. Differential of fuzzy functions // J. Math. Anal. Appl. 1983. V. 91. No. 2. P. 552–558.
- Далецкий Ю.Л., Крейн М.Г. Устойчивость решений дифференциальных уравнений в Банаховом пространстве. М.: Наука, 1970. 535 с.
- Kaleva. O. A note on fuzzy differential equations // Nonlinear Analysis, Theory, Methods and Applications. 2006. Vol. 64, no. 5. P. 895–900.
- Feng Y. Fuzzy stochastic differential systems // Fuzzy Sets Syst. Int. J. Inform. Sci. Engin. 2000. V. 115. No. 3. P. 351–363.
- Malinowski M.T. Existence theorems for solutions to random fuzzy differential equations // Nonllin. Anal. Theor. Method. Appl. 2010. V. 73. No. 6. P. 1515–1532.
- Chen X., Qin X. A new existence and uniqueness theorem for fuzzy differential equations // Int. J. Fuzzy Syst. 2013. V. 13. No. 2. P. 148–151.
- Shvedov A.S. Instrumental variables estimation of fuzzy regression models // J. Intelligent and Fuzzy Systems, 2019. V. 36. No. 6. P. 5457–5462. https://doi.org/10.3233/JIFS-181327
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

