Evaluation of the efficiency of intersystem crossing to a triplet state of fullerene in complexes with amino acids
- Autores: Buchelnikov A.S1, Sokolov P.A1,2, Ramasanoff R.R1
- 
							Afiliações: 
							- Sevastopol State University
- Saint-Petersburg State University
 
- Edição: Volume 68, Nº 5 (2023)
- Páginas: 850-855
- Seção: Articles
- URL: https://cardiosomatics.ru/0006-3029/article/view/673271
- DOI: https://doi.org/10.31857/S0006302923030022
- EDN: https://elibrary.ru/PGDRZM
- ID: 673271
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The important photophysical process that determines the efficiency of photosensitizers is saturation of a triplet state by intersystem crossing during light absorption. In the present work, C60 fullerene complexes with amino acids glycine, lysine, methionine and threonine were studied as promising photosensitizers. All these complexes, for which the calculations were done, demonstrate high values of rate constants of transition to triplet states and a high probability of the ability to generate reactive oxygen species through excitation in the visible spectrum. The carboxyl groups of amino acids that are not involved in electronic excitation can be used as the component of specific DNA aptamers for conjugation to photoactive complexes for a tumor-targeting drug delivery system.
			                Palavras-chave
Sobre autores
A. Buchelnikov
Sevastopol State University
														Email: tolybas@rambler.ru
				                					                																			                												                								Sevastopol, Russia						
P. Sokolov
Sevastopol State University;Saint-Petersburg State UniversitySevastopol, Russia;Saint Petersburg, Russia
R. Ramasanoff
Sevastopol State UniversitySevastopol, Russia
Bibliografia
- M. G. Mokwena, C. A. Kruger, M. T. Ivan, et al., Photodiagn. Photodyn. Ther., 22, 147 (2018).
- Y. N. Konan, R. Gurny, and E. Allcmann, J. Photochem. Photobiol. B, 66 (2), 89 (2002).
- N. Hodgkinson, C. A. Kruger, and H. Abrahamse, Tumor Biol., 39 (10), 1 (2017).
- L. Benov, Med. Princ. Pract., 24 (Suppl. 1), 14 (2015).
- H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., Nature, 318 (6042), 162 (1985).
- Y. Zhang, B. Wang, R. Zhao, et al., Mater. Sci. Eng. C, 115, 111099 (2020).
- M. R. Hamblin, Photochem. Photobiol. Sci., 17 (11), 1515 (2018).
- V. V. Sharoyko, S. V. Ageev, N. E. Podolsky, et al., J. Mol. Liq., 323, 114990 (2021).
- R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
- Q. Liu, L. Xu, X. Zhang, et al., Chem. Asian J., 8 (10), 2370 (2013).
- V. V. Sharoyko, O. S. Shemchuk, A. A. Meshcheriakov, et al., Nanomedicine NBM, 40, 102500 (2022).
- G. G. Panova, E. B. Serebryakov, K. N. Semenov, et al., J. Nanomater., 2019, 2306518 (2019).
- G. Jiang, F. Yin, J. Duan, et al., J. Mater. Sci. Mater. Med., 26 (1), 24 (2015).
- M. E. Casida, in Recent Advances in Density Functional Methods. Part I, Ed. by D. P. Chong (World Scientific, Singapore, 1995), Chap. 5, pp. 155-192.
- A. D. Becke, J. Chem. Phys., 98 (7), 5648 (1993).
- G. A. Petersson, A. Bennett, T. G. Tensfeldt, et al., J. Chem. Phys., 89 (4), 2193 (1988).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.01 (Gaussian, Inc., Wallingford CT (USA), 2016).
- R. H. Xie, G. W. Bryant, L. Jensen, et al., J. Chem. Phys., 118 (19), 8621 (2003).
- C. M. Marian, Wiley Interdiscip. Rev.Comput. Mol. Sci., 2 (2), 187 (2012).
- S. G. Chiodo and M. Leopoldini, Comput. Phys.Commun., 185 (2), 676 (2014).
- R. R. Ramasanoff and P. A. Sokolov, Chem. Phys. Lett., 807, 140076 (2022).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
