Anion Reorientations and Cation Diffusion in Nanostructured Closo-Borates: NMR and Quasielastic Neutron Scattering Studies
- 作者: Skripov A.V.1, Babanova O.A.1, Skoryunov R.V.1, Soloninin A.V.1
-
隶属关系:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- 期: 卷 125, 编号 3 (2024)
- 页面: 338-344
- 栏目: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://cardiosomatics.ru/0015-3230/article/view/662794
- DOI: https://doi.org/10.31857/S0015323024030099
- EDN: https://elibrary.ru/WTMTLK
- ID: 662794
如何引用文章
详细
The dynamical properties of sodium closo-borate NaCB11H12 embedded into SiO2-based nanoporous scaffolds have been studied by nuclear magnetic resonance (NMR) and quasielastic neutron scattering (QENS) over wide temperature ranges. It has been found that a confinement of the closo-borate in nanopores suppresses the order-disorder phase transition, retaining the orientationally disordered phase with high reorientational mobility of the anions and high diffusive mobility of the cations down to low temperatures. This paper is based on the presentation at the RNIKS-2023 conference.
作者简介
A. Skripov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: skripov@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108
O. Babanova
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: skripov@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108
R. Skoryunov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: skripov@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108
A. Soloninin
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: skripov@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108
参考
- Udovic T.J., Matsuo M., Unemoto A., Verdal N., Stavila V., Skripov A.V., Rush J.J., Takamura H., Orimo S. Sodium superionic conduction in Na2B12H12 // Chem. Commun. 2014. V. 50. P. 3750–3752.
- Tang W.S., Matsuo M., Wu H., Stavila V., Unemoto A., Orimo S., Udovic T.J. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures // Energy Storage Mater. 2016. V. 4. P. 79–83.
- Tang W.S., Yoshida K., Soloninin A.V., Skoryunov R.V., Babanova O.A., Skripov A.V., Dimitrievska M., Stavila V., Orimo S., Udovic T.J. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts // ACS Energy Lett. 2016. V. 1. P. 659–664.
- Duchêne L., Kühnel R.S., Rentsch D., Remhof A., Hagemann H., Battaglia C. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture // Chem. Commun. 2017. V. 53. P. 4195–4198.
- Brighi M., Murgia F., Černý R. Closo-hydroborate sodium salts as an emerging class of room-temperature solid electrolytes // Cell Rep. Phys. Sci. 2020. V. 1. No. 100217.
- Andersson M.S., Stavila V., Skripov A.V., Dimitrievska M., Psurek M.T., Leão J.B., Babanova O.A., Skoryunov R.V., Soloninin A.V., Karlsson M., Udovic T.J. Promoting persistent superionic conductivity in sodium monocarba-closo-dodecaborate NaCB11H12 via confinement within nanoporous silica // J. Phys. Chem. C2021. V. 125. P. 16689–16699.
- Skripov A.V., Babanova O.A., Soloninin A.V., Stavila V., Verdal N., Udovic T.J., Rush J.J. Nuclear magnetic resonance study of atomic motion in A2B12H12 (A = Na, K, Rb, Cs): Anion reorientations and Na+ mobility // J. Phys. Chem. C2013. V. 117. P. 25961–25968.
- Skripov A.V., Soloninin A.V., Babanova O.A., Skoryunov R.V. Anion and cation dynamics in polyhydroborate salts: NMR studies // Molecules. 2020. V. 25. No. 2940.
- Tang W.S., Unemoto A., Zhou W., Stavila V., Matsuo M., Wu H., Orimo S., Udovic T.J. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions // Energy Environ. Sci. 2015. V. 8. P. 3637–3645.
- Skripov A.V., Skoryunov R.V., Soloninin A.V., Babanova O.A., Tang W.S., Stavila V., Udovic T.J. Anion reorientations and cation diffusion in LiCB11H12 and NaCB11H12: 1H, 7Li, and 23Na NMR studies // J. Phys. Chem. C. 2015. V. 119. P. 26912–26918.
- Hempelmann R. Quasielastic Neutron Scattering and Solid State Diffusion. Clarendon Press, 2000. 456 p.
- Polshettiwar V., Cha D., Zhang X., Basset J.M. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology // Angew. Chem. Int. Ed. 2010. V. 49. P. 9652–9656.
- Abragam A. The Principles of Nuclear Magnetism. Clarendon Press. 1961. 531 p. [Русский перевод: Абрагам А. Ядерный магнетизм. ИИЛ, 1963. 554 с.]
- Skripov A.V., Soloninin A.V., Babanova O.A., Hagemann H., Filinchuk Y. Nuclear magnetic resonance study of reorientational motion in α-Mg(BH4)2 // J. Phys. Chem. C. 2010. V. 114. P. 12370–12374.
- Markert J.T., Cotts E.M., Cotts R.M. Hydrogen diffusion in the metallic glass a-Zr3RhH3.5 // Phys. Rev. B. 1988. V. 37. P. 6446–6452.
- Dimitrievska M., Shea P., Kweon K., Bercx M., Varley J.B., Tang W.S., Skripov A.V., Stavila V., Udovic T.J., Wood B.C. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12 // Adv. Energy Mater. 2018. V. 8. No. 1703422.
补充文件
