Laboratory System for Intensive Cultivation of Microalgae and Cyanobacteria

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Currently, microalgae and cyanobacteria attract the attention of researchers as potential producers of various valuable substances. To increase the profitability of biotechnological processes using these organisms, it is necessary to select highly effective strains and choose the optimal conditions for their growth and maximum productivity. Growth optimization should be carried out, on the one hand, under intensive conditions, as close as possible to large-scale cultivation, and, on the other hand, in small volumes in order to be able to check many different parameters in parallel at minimal cost. In this paper, the authors present a description and characteristics of their laboratory system for intensive cultivation (LSIC—Laboratory System for Intensive Cultivation) with thermo-, light-, and gas regulation and the possibility of cultivation in four repetitions in eight different conditions, differing in light, temperature, and CO2 concentration. As an example, the results of a number of experiments using the installation are also presented.

Sobre autores

D. Gabrielyan

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

M. Sinetova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: maria.sinetova@mail.ru
Rússia, Moscow

A. Gabrielyan

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

L. Bobrovnikova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

V. Bedbenov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

A. Starikov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

A. Zorina

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

B. Gabel

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

D. Los

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: maria.sinetova@mail.ru
Rússia, Moscow

Bibliografia

  1. Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae // J. Biosci. Bioeng. 2006. V. 101. P. 87. https://doi.org/10.1263/jbb.101.87
  2. Chisti Y. Raceways-based production of algal crude oil // Green. 2013. V. 3. P. 195. https://doi.org/10.1515/green-2013-0018
  3. Hoang A.T., Sirohi R., Pandey A., Nižetić S., Lam S.S., Chen W.-H., Luque R., Thomas S., Arıcı M., Pham V.V. Biofuel production from microalgae: challenges and chances // Phytochem. Rev. 2022. https://doi.org/10.1007/s11101-022-09819-y
  4. Zorina A.A., Bedbenov V.S., Novikova G.V., Panichkin V.B., Los D.A. Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of SpkE protein kinase // Mol. Biol. 2014. V. 48(3). P. 390. https://doi.org/10.1134/S0026893314030212
  5. Sinetova M.A., Los D.A. Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers // Mol. BioSyst. 2016. V. 12. P. 3254. https://doi.org/10.1039/C6MB00551A
  6. Mironov K.S., Sinetova M.A., Shumskaya M., Los D.A. Universal molecular triggers of stress responses in cyanobacterium Synechocystis // Life. 2019. V. 9. P. 67. https://doi.org/10.3390/life9030067
  7. Tsygankov A.A. Laboratory scale photobioreactors. // Appl. Biochem. Microbiol. 2001. V. 37(4). P. 333. https://doi.org/10.1023/A:1010266116747
  8. Benner P., Meier L., Pfeffer A., Kruger K., Oropeza Vargas J.E., Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability // Bioprocess Biosyst. Eng. 2022. V. 45. P. 791. https://doi.org/10.1007/s00449-022-02711-1
  9. Владимирова М.Г., Семененко В.Е. Интенсивная культура одноклеточных водорослей. М.: Академия наук СССР, 1962. 58 с.
  10. Абдуллаев А.А., Семененко В.Е. Интенсивная культура Dunaliella salina Teod. и некоторые ее физиологические характеристики // Физиология растений. 1974. Т. 21. P. 1145.
  11. Fuchs T., Arnold N.D., Garbe D., Deimel S., Lorenzen J., Masri M., Mehlmer N., Weuster-Botz D., Bruck T.B. A newly designed automatically controlled, sterilizable flat panel photobioreactor for axenic algae culture // Front. Bioeng. Biotechnol. 2021. V. 9. P. 697354. https://doi.org/10.3389/fbioe.2021.697354
  12. Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A., Zayadan B.K., Bolatkhan K., Los D.A. Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection // Appl. Biochem. Microbiol. 2020. V. 56. P. 36. https://doi.org/10.1134/S0003683820070030
  13. Nowicka-Krawczyk P., Mühlsteinová R., Hauer T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria) // Sci. Rep. 2019. V. 9. P. 694. https://doi.org/10.1038/s41598-018-36831-0
  14. Furmaniak M.A., Misztak A.E., Franczuk M.D., Wilmotte A., Waleron M., Waleron K.F. Edible cyanobacterial genus Arthrospira: Actual state of the art in cultivation methods, genetics, and application in medicine // Front. Microbiol. 2017. V. 8. P. 2541. https://doi.org/10.3389/fmicb.2017.02541
  15. Fučíková K., Lewis L. Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta) // Fottea. 2012. V. 12. P. 83. https://doi.org/10.5507/fot.2012.007
  16. Liu J., Sun Z., Gerken H., Liu Z., Jiang Y., Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential // Mar. Drugs. 2014. V. 12. P. 3487. https://doi.org/10.3390/md12063487
  17. Mahajan G., Kamat M. γ-Linolenic acid production from Spirulina platensis // Appl. Microbiol. Biotechnol. 1995. V. 43. P. 466. https://doi.org/10.1007/bf00218450
  18. Golmakani M.T., Rezaei K., Mazidi S., Razavi S.H. γ-Linolenic acid production by Arthrospira platensis using different carbon sources // Eur. J. Lipid Sci. Technol. 2012. V. 114. P. 306. https://doi.org/10.1002/ejlt.201100264

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (195KB)
4.

Baixar (161KB)
5.

Baixar (113KB)
6.

Baixar (67KB)
7.

Baixar (207KB)

Declaração de direitos autorais © Д.А. Габриелян, М.А. Синетова, А.К. Габриелян, Л.А. Бобровникова, В.С. Бедбенов, А.Ю. Стариков, А.А. Зорина, Б.В. Габель, Д.А. Лось, 2023