Сравнительный анализ состава стеринов эмбриогенных и неэмбриогенных клеточных линий Larix sibirica Ledeb.
- Авторы: Семёнова Н.В.1, Шмаков В.Н.1, Константинов Ю.М.1, Дударева Л.В.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
- Выпуск: Том 70, № 2 (2023)
- Страницы: 181-191
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://cardiosomatics.ru/0015-3303/article/view/648149
- DOI: https://doi.org/10.31857/S0015330322600516
- EDN: https://elibrary.ru/GKWEZO
- ID: 648149
Цитировать
Аннотация
C помощью метода газовой хромато-масс-спектрометрии проведен сравнительный анализ качественного и количественного составов стериновых компонентов в тканях клеточных линий лиственницы сибирской (Larix sibirica Ledeb.) с разным эмбриогенным потенциалом. Обнаружены существенные межлинейные различия в качественном и количественном содержаниях фракций свободных стеринов и эфиров стеринов. Наряду со стериновыми компонентами обнаружен сквален – тритерпен, являющийся промежуточным соединением в биосинтезе стеринов. Доминирующими свободными стеринами эмбриогенных клеточных линий были β-ситостерин, кампестерин, изофукостерин и стигмастерин, а неэмбриогенных линий – β-ситостерин, кампестерин и стигмастерин. При этом содержание кампестерина в эмбриогенных линиях было в 1.3−1.9 раза выше, чем в неэмбриогенных. Поскольку кампестерин является предшественником брассиностероидов, логично предположить, что его высокое содержание обусловлено эмбриогенным состоянием клеточных линий. Изофукостерин в заметных количествах найден только в эмбриогенных линиях. Во фракции эфиров стеринов неэмбриогенных линий обнаружено бόльшее разнообразие компонентов по сравнению с эмбриогенными линиями. Во всех клеточных линиях среди идентифицированных стериновых эфиров преобладали соединения без двойных связей, несущие в качестве структурного фрагмента стерановое ядро (кор) – циклопентанопергидрофенантрен: их содержание варьировало от 52 до 71% от суммы эфиров стеринов. Обнаруженные различия в составе стеринов и эфиров стеринов у клеточных линий L. sibirica с разным эмбриогенным потенциалом свидетельствуют о значительных перестройках в метаболизме стеринов в ходе эмбриогенеза, которые, могут быть связаны с их участием в этом процессе на стадии формирования зародышей.
Ключевые слова
Об авторах
Н. В. Семёнова
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: tashasemyonova@mail.ru
Россия, Иркутск
В. Н. Шмаков
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Email: tashasemyonova@mail.ru
Россия, Иркутск
Ю. М. Константинов
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Email: tashasemyonova@mail.ru
Россия, Иркутск
Л. В. Дударева
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Email: tashasemyonova@mail.ru
Россия, Иркутск
Список литературы
- Третьякова И.Н., Ворошилова Е.В., Шуваев Д.Н., Пак М.Э. Перспективы микроклонального размножения хвойных в культуре in vitro через соматический эмбриогенез // Хвойные бореальной зоны. 2012. Т. 30. С. 180.
- Tretiakova I.N. Embryogenic cell lines and somatic embryogenesis in an vitro culture of Siberian larch // Dokl. Biol. Sci. 2013. V. 450. № 1. P. 139. https://doi.org/10.1134/S0012496613030034
- Joy R.W., Yeung E.C., Kong L., Thorpe T. Development of white spruce somatic embryos: I. Storage product deposition // In Vitro Cell. Dev. Biol. – Plant. 1991. V. 27. P. 32.
- Tranvan H.O.A., Troton D., Calvayrac R. Morphological, histological and lipid changes during adventitious budding in Pinus pinaster cultured cotyledons // J. Exp. Bot. 1988. V. 39. № 7. P. 907. https://doi.org/10.1093/jxb/39.7.907
- Makarenko S.P., Shmakov V.N., Dudareva L.V., Stolbikova A.V., Semenova N.V., Tret’yakova I.N., Konstantinov Yu.M. Fatty acid composition of total lipids in embryogenic and nonembryogenic callus lines of larch // Russ. J. Plant Physiol. 2016. V. 63. №. 2. P. 252. https://doi.org/10.1134/S1021443716020102
- Семёнова Н.В., Шмаков В.Н., Пак М.Э., Третьякова И.Н., Константинов Ю.М., Дударева Л.В. Особенности состава нейтральных липидов эмбриогенных и неэмбриогенных клеточных линий Larix sibirica Ledeb. // Биологические мембраны. 2020. Т. 37. С. 215. https://doi.org/10.31857/S0233475520020127
- Semenova N.V., Shmakov V.N., Konstantinov Yu.M., Dudareva L.V. Phospholipids of embryogenic and non-embryogenic cell lines of Larix sibirica Ledeb. // Russ. J. Plant Physiol. 2020. V. 67. P. 1076. https://doi.org/10.1134/S1021443720060151
- Valitova J.N., Sulkarnayeva A.G., Minibayeva F.V. Plant sterols: Diversity, biosynthesis, and physiological functions // Biochemistry (Moscow). 2016. V. 81. P. 819. https://doi.org/10.1134/S0006297916080046
- Kreis W., Muller-Uri F. Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins // Ann. Plant Rev. 2010. V. 40. P. 304. https://doi.org/10.1002/9781444320503.ch6
- Willmann M.R. Sterols as regulators of plant embryogenesis // Trends Plant Sci. 2000. V. 5. № 10. P. 416. https://doi.org/10.1016/S1360-1385(00)91717-5
- Hartmann M.A. Plant sterols and the membrane environment // Trends Plant Sci. 1998. V. 3. № 5. P. 170. https://doi.org/10.1016/S1360-1385(98)01233-3
- Senthill-Kumar M., Wang K., Mysore K.S. AtCYP710A1 gene emediated stigmasterol production plays a role in imparting temperature stress tolerance in Arabidopsis thaliana // Plant Signal. Behav. 2013. V. 8. № 2. P. e23142-1. https://doi.org/10.4161/psb.23142
- Schaller H. The role of sterols in plant growth and development // Prog. Lipid Res. 2003. V. 42. № 3. P. 163. https://doi.org/10.1016/S0163-7827(02)00047-4
- Bajguz A., Chmur M., Gruszka D. Comprehensive overview of the Brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections // Front. Plant Sci. 2020. V. 11. P. 1034. https://doi.org/10.3389/fpls.2020.01034
- Clouse S.D. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development // Plant Cell. 2011. V. 23. № 4. P. 1219. https://doi.org/10.1105/tpc.111.084475
- Tian X., Xuan L., Liu B., Hu T., Wang C., Wang X. Effects of heterologous expression of Populus euphratica brassinosteroids biosynthetic enzyme genes CPD (PeCPD) and DWF4 (PeDWF4) on tissue dedifferentiation and growth of Arabidopsis thaliana seedlings // Plant Cell Tissue Organ Cult. 2018. V. 132. № 1. P. 111. https://doi.org/10.1007/s11240-017-1316-2
- Nolan T., Chen J., Yin Y. Cross-talk of Brassinosteroid signaling in controlling growth and stress responses // Biochem. J. 2017. V. 474. № 16. P. 2641. https://doi.org/10.1042/BCJ20160633
- Zu S.H., Jiang Y.T., Hu L.Q., Zhang Y.J., Chang J.H., Xue H.W., Lin W.H. Effective modulating Brassinosteroids signal to study their specific regulation of reproductive development and enhance yield // Front. Plant Sci. 2019. V. 10. P. 1. https://doi.org/10.3389/fpls.2019.00980
- Schrick K. Mayer U., Martin G., Bellini C., Kuhnt C., Schmidt J., Jurgens G. Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis // Plant J. 2002. V. 31. № 1. P. 61. https://doi.org/10.1046/j.1365-313X.2002.01333.x
- Schrick K., Cordova C., Li G., Murray L., Fujioka S. A dynamic role for sterols in embryogenesis of Pisum sativum // Phytochem. 2011. V. 72. № 6. P. 465. https://doi.org/10.1016/j.phytochem.2011.01.009
- Cunha A., Ferreira M.F. Differences in free sterols content and composition associated with somatic embryogenesis, shoot organogenesis and calli growth of flax // Plant Sci. 1997. V. 124. P. 97. https://doi.org/10.1016/S0168-9452(97)04587-1
- Zur I., Skoczowski A., Niemczyk E., Dubert F. Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus // Acta Physiol. Plant. 2002. V. 24. № 1. P. 3. https://doi.org/10.1007/s11738-002-0015-7
- Silvestro D., Andersen T.G., Schaller H., Jensen P.E. Plant sterol metabolism. ∆7-Sterol-C5-desaturase (STE1/DWARF7), ∆5,7-sterol-∆7-reductase (DWARF5) and ∆24-sterol-∆24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. // PLOS One. 2013. V. 8. P. 1. https://doi.org/10.1371/journal.pone.0056429
- Дударева Л.В., Семенова Н.В., Нохсоров В.В., Рудиковская Е.Г., Петров К.А. Компонентный состав фитостеринов надземной части хвоща пестрого Еquisétum variegatum Schleich. ex. Web., произрастающего в cеверо-восточной Якутии // Химия растительного сырья. 2020. № 2. С. 133. https://doi.org/10.14258/jcprm.2020025555
- Uchida H., Ohyama K., Suzuki M., Yamashita H., Muranaka T., Ohyama K. Triterpenoid levels are reduced during Euphorbia tirucalli L. callus formation // Plant Biotechnol. 2010. V. 27. № 1. P. 105. https://doi.org/10.5511/plantbiotechnology.27.105
- Chiu P.L., Bottino P.J., Patterson G.W. Sterol composition of nystatin and amphotericin B resistant tobacco calluses // Lipids. 1980. V. 15. №. 1. P. 50. https://doi.org/10.1007/BF02534118
- Deng S., Wei T., Tan K., Hu M., Li F., Zhai Y., Ye Sh., Xiao Y., Hou L., Luo M. Phytosterol content and the campesterol: sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation // Sci. China Life Sci. 2016. V. 59. № 2. P. 183. https://doi.org/10.1007/s11427-015-4992-3
- Qian P., Han B., Forestier E., Hu Z., Gao N., Lu W., Shaller H., Li J., Hou S. Sterols are required for cell fate commitment and maintenance of the stomatal lineage in Arabidopsis // Plant J. 2013. V. 74. № 6. P. 1029. https://doi.org/10.1111/tpj.12190
- Carland F.M., Fujioka Sh., Takatsuto S., Yoshida Sh., Nelson T. The identification of CVP1 reveals a role for sterols in vascular patterning // Plant Cell. 2002. V. 14. P. 2045. https://doi.org/10.1105/tpc.003939
- Ines C., Corbacho J., Paredes M.A., Labrador J., Cordeiro A.M., Gomez Jimenez M.C. Regulation of sterol content and biosynthetic gene expression during flower opening and early fruit development in olive // Physiol. Plant. 2019. V. 167. № 4. P. 526. https://doi.org/10.1111/ppl.12969
- Schaeffer A., Bouvier-Nave P., Benveniste P., Schaller H. Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2 // Lipids. 2000. V. 35. № 3. P. 263. https://doi.org/10.1007/s11745-000-0522-1
- Valitova J., Renkova A., Mukhitova F., Dmitrieva S., Beckett R.P., Minibayeva F.V. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress // Plant Physiol. Biochem. 2019. V. 142. P. 452. https://doi.org/10.1016/j.plaphy.2019.07.026
- Dyas L., Prescott M.C., Evershed R.P., Goad L.J. Steryl esters in a cell suspension culture of celery (Apium graveolens) // Lipids. 1991. V. 26. № 7. P. 536. https://doi.org/10.1007/BF02536600
- Sharma P., Patil A., Patil D. Quantification of β-sitosterol from field grown plants and callus of Crataeva tapia L. // Int. J. Pharm. Sci. 2016. V. 7. № 4. P. 1556. https://doi.org/10.13040/IJPSR.0975-8232.7(4).1556-63
- Третьякова И.Н., Иваницкая А.С., Пак М.Э. Продуктивность эмбриогенных клеточных линий и их сомаклональная изменчивость у лиственницы сибирской in vitro // Лесоведение. 2015. №. 1. С. 27.
- Sonawane P.D., Pollier J., Panda S., Szymanski J., Massalha H., Yona M., Unger T., Malitsky S., Arendt Ph., Pauwels L., Almekias-Siegl E., Rogachev I., Meir S., Cardenas P.D., Athar M. et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism // Nat. Plants. 2016. V. 3. № 1. P. 1. https://doi.org/10.1038/nplants.2016.205
- Lozano-Grande M.A., Gorinstein S., Espitia-Rangel E., Dávila-Ortiz G., Martínez-Ayala A.L. Plant sources, extraction methods, and uses of squalene // Int. J. Agron. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1829160
- Iheagwam F.N., Israel E.N., Kayode K.O., De Campos O.C., Ogunlana O.O., Chinedu S.N. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes // Evid. Based Complement. Alternat. Med. 2019. V. 2019. P. 1. https://doi.org/10.1155/2019/6316231
- Nagalakshmi M.A.H., Murthy K.S.R. Phytochemical profile of crude seed oil of Wrightia tinctoria R. BR. and Wrightia arborea (DENNST.) MABB. by GC-MS // Int. J. Pharm. Sci. Rev. Res. 2015. V. 31. P. 46.
Дополнительные файлы
