Использование явления реювенилизации для получения вегетативного потомства древесных
- Авторы: Шмаков В.Н.1, Бельков В.И.1,2, Константинов Ю.М.1,2
- 
							Учреждения: 
							- Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
 
- Выпуск: Том 71, № 6 (2024)
- Страницы: 697-710
- Раздел: ОБЗОРЫ
- URL: https://cardiosomatics.ru/0015-3303/article/view/648254
- DOI: https://doi.org/10.31857/S0015330324060032
- EDN: https://elibrary.ru/MAWCHU
- ID: 648254
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Вегетативное размножение обеспечивает возможность масштабирования ценного растительного материала в наиболее короткие сроки. Особую важность оно приобретает при разведении древесных культур с сохранением ценных биологических и морфологических сортовых особенностей отдельных особей. Использование такого подхода позволяет быстро размножать особо ценные произрастающие в парках и лесах растения, в то время как при семенном воспроизводстве не сохраняются их ценные наследственные признаки. В связи с этим создание и совершенствование надежных способов вегетативного размножения древесных видов не теряет своей актуальности. Как известно, вегетативное размножение деревьев достигается в ювенильной фазе развития, а не на стадии зрелости, что сильно ограничивает использование этого подхода. Такая ситуация может быть преодолена путем применения технологий, основанных на активном использовании реювенилизации – явлении, биологическая природа которого на сегодняшний день остается недостаточно изученной. Тем не менее, накоплен значительный исследовательский опыт инициации реювенилизации, т.е. проведения процедур искусственного возвращения взрослых растений или отдельных их частей в юное состояние. В настоящей статье приводится обзор технологий, позволяющих реализовать процесс переключения стратегии развития растения с фазы зрелости к ювенильному состоянию. К ним относятся культивирование меристем, химическая обработка растительного материала, сильная обрезка и хеджирование, использование корневых отпрысков и коппинг, инициация развития пазушных и эпикормических почек, прививка и микропрививка, повторное субкультивирование, а также соматический эмбриогенез. Для дальнейшего успешного развития этого направления требуется применение комплексного подхода, основанного на совокупности омиксных технологий и методов молекулярной генетики, молекулярной и клеточной биологии.
Ключевые слова
Полный текст
 
												
	                        Об авторах
В. Н. Шмаков
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
							Автор, ответственный за переписку.
							Email: vladwork70@gmail.com
				                					                																			                												                	Россия, 							Иркутск						
В. И. Бельков
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук; Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
														Email: vladwork70@gmail.com
				                					                																			                												                	Россия, 							Иркутск; Иркутск						
Ю. М. Константинов
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук; Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
														Email: vladwork70@gmail.com
				                					                																			                												                	Россия, 							Иркутск; Иркутск						
Список литературы
- Giri C.C., Shyamkumar B., Anjaneyulu C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview // Trees. 2004. V. 18. P. 115. https://doi.org/10.1007/s00468-003-0287-6
- Global Forest Resources Assessment 2020: Main report. Rome: FAO. 2020. 186 p. https://doi.org/10.4060/ca9825en
- El-Kassaby Y.A., Klápště J. Genomic selection and clonal forestry revival // Proc. 3rd international conference of the IUFRO unit 2.09.02 on “Woody plant production integrating genetic and vegetative propagation technologies” September 8-12, 2014. / Eds. Park Y.S., Bonga J.M. Vitoria-Gasteiz. Spain. 2014. P. 98.
- Ewald D. Micropropagation of Larix species via organogenesis // Protocols for Micropropagation of Woody Trees and Fruits / Eds. Jain S.M., Häggman H. Springer. 2007. P. 125. https://doi.org/10.1007/978-1-4020-6352-7_12
- Williams C.G., Savolainen O. Inbreeding depression in conifers: implications for using selfing as a breeding strategy // For. Sci. 1996. V. 42. P. 102. https://doi.org/10.1093/FORESTSCIENCE/42.1.102
- Bonga J.M. Conifer clonal propagation in tree improvement programs // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 3.
- Krasnoperova V., Bukharina I., Islamova N. Features introduction to the culture in vitro of coniferous trees // AgroEcoInfo. Electronic science-productive magazine. 2016. V. 24. № 2. (In Russian) https://agroecoinfo.ru/STATYI/2016/2/st_211.doc
- Isah T. Explant rejuvenation in the clonal propagation of woody plants // Plant Cell, Tissue Organ Cult. 2023. V. 154. P. 209. https://doi.org/10.1007/s11240-023-02520-8
- Park Y.S., Bonga J.M. Conifer micropropagation: its function in tree improvement programs // Micropropagation of Woody Plants / Eds. Ahuja M.R. Kluwer Academic. Dordrecht. 1992. P. 457. https://doi.org/10.1007/978-94-015-8116-5_27
- von Aderkas P., Bonga J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment // Tree Physiol. 2000. V. 20. P. 921. https://doi.org/ 10.1093/treephys/20.14.921
- Bonga J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers // Can. J. For. Res. 2015. V. 45. P. 379. https://doi.org/10.1139/cjfr-2014-0360
- Bonga J.M., von Aderkas P. Rejuvenation of tissues from mature conifers and its implications for propagation in vitro // Clonal Forestry I, Genetics and Biotechnology / Eds. Ahuja M.R., Libby W.J. Springer-Verlag. Berlin. Heidelberg. 1993. P. 182. https://doi.org/10.1007/978-3-642-84175-0_12
- Park Y.S. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations // Ann. For. Sci. 2002. V. 59. P. 651. https://doi.org/10.1051/forest:2002051
- Bonga J.M., MacDonald J.E., von Aderkas P. Cloning of conifers, with emphasis on mature trees. // Advances in plant biotechnology / Eds. Rao G.P., Zhao Y., Radchuck V.V., Batnagar S.K. Studium Press LLC. Houston. 2008. P. 475.
- Bonga J.M., Klimaszewska K., von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers // Plant Cell, Tissue Organ Cult. 2010. V. 100. P. 241. https://doi.org/10.1007/s11240-009-9647-2
- Trontin J-F., Aronen T., Hargreaves C., Montalbán I.A., Moncaleán P., Reeves C., Quoniou S., Lelu-Walter M.-A., Klimaszewska K. International effort to induce somatic embryogenesis in adult pine trees // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 211.
- Wang Y., Yao R. Optimization of rhizogenesis for in vitro shoot culture of Pinus massoniana Lamb // J. For. Res. 2019. V. 32. P. 203. https://doi.org/10.1007/s11676-019-01076-8
- Zarei M., Salehi H., Jowkar A. Controlling the barriers of cloning mature Picea abies (L.) H. Karst. via tissue culture and co-cultivation with Agrobacterium rhizogenes // Trees. 2020. V. 34. P. 637. https://doi.org/10.1007/s00468-019-01945-z
- Beck S.L., Dunlop R., van Staden J. Rejuvenation and micropropagation of adult Acacia mearnsii using coppice material // Plant Growth Regul. 1998. V. 26. P. 149. https://doi.org/10.1023/A:1006179620554
- Zhang Z., Sun Y., Li Y. Plant rejuvenation: from phenotypes to mechanisms // Plant Cell Reports. 2020. V. 39. P. 1249. https://doi.org/10.1007/s00299-020-02577-1
- Bonga J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? // Trees. 2017. V. 31. P. 781. https://doi.org/10.1007/s00468-016-1509-z
- Mikhalevskaya O.B., Shabasheva A.A. Cyclic rejuvenation in the development of shoots of canary island pine (Pinus canariensis C. Sm.) // Russ. J. Dev. Biol. 2013. V. 44. P. 19. https://doi.org/10.1134/S1062360412050062
- Vidoy-Mercado I., Narváez I., Palomo-Ríos E., Litz R.E., Barcelу-Muсoz A., Pliego-Alfaro F. Reinvigoration/rejuvenation induced through micrografting of tree species: signaling through graft union // Plants. 2021. V. 10. P. 1197. https://doi.org/10.3390/plants10061197
- Birnbaum K.D., Roudier F. Epigenetic memory and cell fate reprogramming in plants // Regeneration. 2017. V. 4. P. 15. https://doi.org/10.1002/reg2.73.eCollection 2017 Feb
- Ratclife O.J., Amaya I., Vincent C.A., Rothstein S., Carpenter R., Coen E.S., Bradley D.J. A common mechanism controls the life cycle and architecture of plants // Development. 1998. V. 125. P. 1609. https://doi.org/10.1242/dev.125.9.1609
- Moon H.K., Park S.Y., Kim Y.W., Kim S.H. Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree // In Vitro Cell Dev. Biol. Plant. 2008. V. 44. P. 119. https://doi.org/10.1007/s11627-008-9122-5
- Greenwood M.S., Day M.E., Schatz J. Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens Sarg.) // Tree Physiol. 2010. V. 30. P. 459. https://doi.org/10.1093/treephys/tpq004
- Read P.E., Bavougian C.M. In vitro rejuvenation of woody species // Protocols for micropropagation of selected economically-important horticultural plants. Methods in molecular biology. V. 994 / Eds. Lambardi M. et al. Springer Science Business Media. New York. 2013. P. 383. https://doi.org/10.1007/978-1-62703-074-8_30
- Nascimento B., Sá A.C.S., Lemos L.B.D., Rosa D.P.D., Pereira M.D.O., Navroski M.C. Three epicormic shoot techniques in I. paraguariensis mother trees and its cutting according to the material rejuvenation degree // Cerne. 2018. V. 24. P. 240. https://doi.org/10.1590/01047760201824032584
- Salomão L.C.C., Siqueira D.L.D., Silva D.F.P.D. Production of ‘Ubá’ mango tree submitted to rejuvenation pruning and fertilized with nitrogen // Revista Brasileira De Fruticultura. 2018. V. 40. P. e812. https://doi.org/ 10.1590/0100-29452018812
- Massoumi M., Krens F.A., Visser R.G.F., De Klerk G.M. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues // J. Plant Physiol. 2017. V. 208. P. 52. https://doi.org/10.1016/j.jplph.2016.10.010
- Irish E.E., McMurray D. Rejuvenation by shoot apex culture recapitulates the developmental increase of methylation at the maize gene Pl-Blotched // Plant Mol. Biol. 2006. V. 60. P. 747. https://doi.org/10.1007/s11103-005-5620-6
- Stange L. Cellular interactions during early differentiation // Cellular Interactions. Encyclopedia of Plant Physiology. V. 17 // Eds. Linskens H.F., Heslop-Harrison J. Springer. Berlin. Heidelberg. 1984. P. 424. https://doi.org/10.1007/978-3-642-69299-4_20
- Burrows G.E. Leaf axil anatomy in the Araucariaceae // Aust. J. Bot. 1987. V. 35. P. 631. https://doi.org/10.1071/bt9870631
- Soyars C.L., James S.R., Nimchuk Z.L. Ready, aim, shoot: stem cell regulation of the shoot apical meristem // Curr. Opin. Plant Biol. 2016. V. 29. P. 163. https://doi.org/10.1016/j.pbi.2015.12.002
- Monteuuis O. Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments // Physiol. Plant. 1991. V. 81. P. 111. https://doi.org/10.1111/j.1399-3054.1991.tb01721.x
- Prehn D., Serrano C., Mercado A., Stange C., Barrales L., Arce-Johnson P. Regeneration of whole plants from apical meristems of Pinus radiata // Plant Cell, Tissue Organ Cult. 2003. V. 73. P. 91. https://doi.org/10.1023/A:1022615212607
- Ballester A., Corredoira E., Vieitez A.M. Limitations of somatic embryogenesis in hardwood trees // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 56.
- Bonga J.M. Adventitious shoot formation in cultures of immature female strobili of Larix decidua // Physiol. Plant. 1984. V. 62. P. 416. https://doi.org/10.1111/j.1399-3054.1984.tb04595.x
- Wang K.X., Karnosky D.F., Timmis R. Adventitious bud production from mature Picea abies: rejuvenation associated with female strobili formation // Woody plant biotechnology / Eds. Ahuja M.R. Plenum Press. New York. 1991. P. 83. https://doi.org/ 10.1007/978-1-4684-7932-4_11
- Cardoso J.C., Martinelli A.P., Latado R.R. Somatic embryogenesis from ovaries of sweet orange cv. Tobias // Plant Cell, Tissue Organ Cult. 2012. V. 109. P. 171. https://doi.org/10.1007/s11240-011-0073-x
- Michaux-Ferriére N., Grout H., Carron M.P. Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae) // Am. J. Bot. 1992. V. 79. P. 174. https://doi.org/10.2307/2445105
- Miyashima S., Sebastian J., Lee J.-Y., Helariutta Y. Stem cell function during plant vascular development // EMBO J. 2013. V. 32. P. 178. https://doi.org/10.1038/emboj.2012.301
- Sugimoto K., Jiao Y., Meyerowitz E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway // Dev. Cell. 2010. V. 18. P. 463. https://doi.org/10.1016/j.devcel.2010.02.004
- Wu H., Hu Z.-H. Comparative anatomy of resin ducts of the Pinaceae // Trees. 1997. V. 11. P. 135. https://doi.org/ 10.1007/s004680050069
- Bonga J.M. Organogenesis in vitro of tissues from mature conifers // In Vitro. 1981. V. 17. P. 511. https://doi.org/10.2307/4292533
- Pulianmackal A.J., Kareem A.V.K., Durgaprasad K., Trivedi Z.B., Prasad K. Competence and regulatory interactions during regeneration in plants // Front. Plant Sci. 2014. V. 5. P. 1. https://doi.org/10.3389/fpls.2014.00142
- Steward F.C., Mapes M.O., Mears K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell // Am. J. Bot. 1958. V. 45. P. 705. https://doi.org/ 10.1002/j.1537-2197.1958.tb10599.x
- Greenwood M.S. Rejuvenation of forest trees // Plant Growth Regul. 1987. V. 6. P. 1. https://doi.org/10.1007/BF00043947
- Benson E.E. Special symposium: In vitro plant recalcitrance. In vitro plant recalcitrance: an introduction // In Vitro Cell Dev. Biol. Plant. 2000. V. 36. P. 141. https://doi.org/10.1007/s11627-000-0029-z
- Zimmerman R.H., Hackett W.P., Pharis R.P. Hormonal aspects of phase change and precocious flowering // Hormonal Regulation of Development III / Eds. Pharis R.P., Reid D.M. Springer-Verlag. Heidelberg. 1985. P. 79. https://doi.org/10.1007/978-3-642-67734-2_4
- Niu S.H., Li Z.X., Yuan H.W., Fang P., Chen X.Y., Li W. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco // J. Exp. Bot. 2013. V. 64. P. 3411. https://doi.org/10.1093/jxb/ert186
- Ivanchenko M.G., Muday G.K., Dubrovsky J.G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana // Plant J. 2008. V. 55. P. 335. https://doi.org/10.1111/j.1365-313X.2008.03528.x
- Poethig R.S. Phase change and the regulation of shoot morphogenesis in plants // Sci. 1990. V. 250. P. 923. https://doi.org/10.1126/science.250.4983.923
- Kiyosue T., Takano K., Kamada H., Harada H. Induction of somatic embryogenesis in carrot by heavy metal ions // Can. J. Bot. 1990. V. 68. P. 2301. https://doi.org/10.1139/b90-293
- Rout G.R., Samantaray S., Das P. Somatic embryogenesis and plant regeneration from callus culture of Acacia catechu - a multipurpose leguminous tree // Plant Cell, Tissue Organ Cult. 1995. V. 42. P. 283. https://doi.org/ 10.1007/BF00030000
- McCabe P.F., Valentine T.A., Forsberg L.S., Pennell R.I. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot // Plant Cell. 1997. V. 9. P. 2225. https://doi.org/10.1105/tpc.9.12.2225
- Schmidt E.D.L., de Jong A.J., de Vries S.C. Signal molecules involved in plant embryogenesis // Plant Mol. Biol. 1994. V. 26. P. 1305. https://doi.org/ 10.1007/BF00016476
- Shinshi H., Mohnen D., Meins F.Jr. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin // Proc. Natl. Acad. Sci. U.S.A. 1987. V. 84. P. 89. https://doi.org/ 10.1073/pnas.84.1.89
- De Jong A.J., Cordewener J., Lo Schiavo F., Terzi M., Vandekerckhove J., Van Kammeren A., De Vries S.C. A carrot somatic embryo mutant is rescued by chitinase // Plant Cell. 1992. V. 4. P. 425. https://doi.org/10.2307/3869444
- Pittock C., Weinman J.J., Rolfe B.G. The activity of a tobacco basic chitinase promotor in transgenic white clover provides insights into plant development and symbiosis // Aust. J. Plant Physiol. 1997. V. 24. P. 555. https://doi.org/10.1071/PP97019
- Mo L.H., Egertsdotter U., von Arnold S. Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology // Ann. Bot. 1996. V. 77. P. 143. https://doi.org/10.1006/anbo.1996.0016
- Mason W.L., Menzies M.I., Biggin, P. A comparison of hedging and repeated cutting cycles for propagating clones of Sitka spruce // Forestry. 2002. V. 75. P. 149. https://doi.org/10.1093/forestry/75.2.149
- Mitchell R.G., Zwolinski J., Jones N.B. A review on the effects of donor maturation on rooting and field performance of conifer cuttings // Southern African Forestry J. 2004. V. 201. P. 53. https://doi.org/10.1080/20702620.2004.10431774
- Masaka K., Torita H., Kon H., Fukuchi M. Seasonality of sprouting in the exotic tree Robinia pseudoacacia L. in Hokkaido, northern Japan // J. For. Res. 2017. V. 20. P. 386. https://doi.org/10.1007/s10310-015-0488-z
- Clapa D., Fira A. Tissue culture and ex-vitro acclimation of Rhododendron sp // Bulletin University of Agricultural Sciences and Veterinary Medicine CLUJ-NAPOCA. 2007. V. 64. P. 39. https://doi.org/10.15835/buasvmcn-hort:1899
- St. Clair J.B., Kleinschmit J., Svolba J. Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.) // Silvae Genet. 1985. V. 34. P. 42.
- Crawford B.C.W., Sewell J., Golembeski G., Roshan C., Long J.A., Yanofsky M.F. Genetic control of distal stem cell fate within root and embryonic meristems // Sci. 2015. V. 347. P. 655. https://doi.org/10.1126/science.aaa0196
- Economou A.S., Spanoudaki M.J. Regeneration in vitro of oleaster Elaeagnus angustifolia L.) from shoot tips of mature trees // Acta Hortic. 1988. V. 227. P. 363. https://doi.org/10.17660/ActaHortic.1988.227.66
- Minghe L., Faxin H. Performance of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) plantlets from upper-crown and basal origins as modified by grafting and development as buried ramets before explant harvest // Silvae Genet. 2001. V. 50. P. 37.
- Boulay M. Conifer micropropagation: applied research and commercial aspects // Cell and tissue culture in forestry, case histories: gymnosperms, angiosperms and palms. V. 3 / Eds. Bonga J.M., Durzan D.J. Martinus Nijhoff Publishers. Dordrecht. 1987 P. 185.
- Meier A.R., Saunders M.R., Michler C.H. Epicormic buds in trees: a review of bud establishment, development and dormancy release // Tree Physiol. 2012. V. 32. P. 565. https://doi.org/10.1093/treephys/tps040
- Harmer R. Production and use of epicormic shoots for the vegetative propagation of mature oak // Forestry. 1988. V. 61. P. 305. https://doi.org/10.1093/forestry/61.4.305-a
- Brand M.H., Lineberger R.D. In vitro rejuvenation of Betula (Betulaceae): morphological evaluations // Am. J. Bot. 1992. V. 79. P. 618. https://doi.org/ 10.2307/2444877
- Henry P.H., Preece J.E. Production and rooting of shoots generated from dormant stem sections of Acer species // Hort. Sci. 1997. V. 32. P. 1274. https://doi.org/10.21273/HORTSCI.32.7.1274
- Vieitez A.M., Corredoira C., Ballester A., Muñoz F., Durán J., Ibarra M. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra // Plant Cell, Tissue Organ Cult. 2009. V. 98. P. 135. https://doi.org/ 10.1007/s11240-009-9546-6
- Selby C., Watson S., Harvey B.M.R. Morphogenesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) bud cultures-tree maturation and explants from epicormic shoots // Plant Cell, Tissue Organ Cult. 2005.V. 83. P. 279. https://doi.org/ 10.1007/s11240-005-7016-3
- Cortizo M., De Diego N., Moncalean P., Ordas R.J. Micropropagation of adult Stone Pine (Pinus pinea L.) // Trees. 2009. V. 23. P. 835. https://doi.org/10.1007/s00468-009-0325-0
- De Diego N., Montalban I.A., Fernandez de Larrinoa E., Moncalean P. In vitro regeneration of Pinus pinaster adult trees // Can. J. For. Res. 2008. V. 38. P. 2607. https://doi.org/10.1139/x08-102
- De Diego N., Montalban I.A., Moncalean P. In vitro regeneration of adult Pinus sylvestris L. trees // South African J. Bot. 2010. V. 76. P. 158. https://doi.org/10.1016/j.sajb.2009.09.007
- Wan Y., Fan F. Direct organ regeneration from apical shoot buds of adult Pinus massoniana Lamb // In Vitro Cell. Dev. Biol. Plant. 2024. https://doi.org/10.1007/s11627-024-10415-2
- Boulay M. In vitro propagation of tree species // Plant tissue and cell culture / Eds. Green C.E., Somers D.A., Hackett W.P., Biesboer D.D. Liss. New York. 1987. P. 367.
- Fraga M.F., Cañal M.J., Aragonés A., Rodríguez R. Factors involved in Pinus radiata D. Don. micrografting // Ann. For. Sci. 2002. V. 59. P. 155. https://doi.org/10.1051/forest:2002002
- Chang I.-F., Chen P.-J., Shen C.-H., Hsieh T.-J., Hsu Y.-W., Huang B.-L., Kuo C.-I., Chen Y.-T., Chu H. A., Yeh K.-W., Huang L.-C. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl // Proteome Sci. 2010. V. 8. P. 64. https://doi.org/10.1186/1477-5956-8-64
- Ondro W.J., Couto L., Betters D.R. The status and practice of forestry in Brazil in the early 1990s // For. Chronicle. 1995. V. 7. P. 106. https://doi.org/10.5558/tfc71106-1
- Su X.C. Study on the differences of the seedling of different generations from successive tissue culture of Chinese fir clone // J. Fujian College Forestry. 2000. V. 20. P. 353.
- Ashapkin V.V., Kutueva L.I., Vanyushin B.F. Aging epigenetics: accumulation of errors or realization of a specific program? // Biochem. 2015. V. 80. P. 1406. https://doi.org/ 10.1134/S0006297915110024
- Hübl S., Zoglauer K. Entwicklung einer Vermehrungsmethode für züchterisch wertvolle Lärchen. Beitr // Forstwirtschaft. 1991. V. 25. P. 18.
- Kretzschmar U., Ewald D. Vegetative propagation of 140-year-old Larix decidua trees by different in vitro techniques // Plant Physiol. 1994. V. 144. P. 627. https://doi.org/10.1016/s0176-1617(11)82149-8
- Castander-Olarieta A., Moncaleán P., Montalbán I.A. Somatic embryogenesis in Pines // Somatic Embryogenesis. Methods in Molecular Biology. V. 2527/ Eds. Ramírez-Mosqueda M.A. Humana. New York. 2022. P. 41. https://doi.org/10.1007/978-1-0716-2485-2_4
- Klimaszewska K., Rutledge R.G. Is there potential for propagation of adult spruce trees through somatic embryogenesis? // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 195.
- Ruaud J.N., Bercetche J., Paques M. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants // Plant Cell Rep. 1992. V. 11. P. 563. https://doi.org/ 10.1007/BF00233093
- Harvengt L., Trontin J.F., Reymond I., Canlet F., Pâques M. Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis // Planta. 2001. V. 213. P. 828. https://doi.org/10.1007/s004250100628
- Varis S., Klimaszewska K., Aronen T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees // Front. Plant Sci. 2018. V. 9. P. 1551. https://doi.org/ 10.3389/fpls.2018.01551
- Klimaszewska K., Overton C., Stewart D., Rutledge R.G. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during tissue culture process // Planta. 2011. V. 233. P. 635. https://doi.org/10.1007/s00425-010-1325-4
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 


