Оценка прогноза модуляции галактических космических лучей в 25-м цикле солнечной активности
- Авторы: Струминский А.Б.1, Белов А.В.2, Гущина Р.Т.2, Янке В.Г.2, Григорьева И.Ю.3
- 
							Учреждения: 
							- Институт космических исследований РАН
- Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
- Главная (Пулковская) астрономическая обсерватория РАН
 
- Выпуск: Том 65, № 3 (2025)
- Страницы: 324-334
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0016-7940/article/view/686967
- DOI: https://doi.org/10.31857/S0016794025030039
- EDN: https://elibrary.ru/ESAAGB
- ID: 686967
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Различие формы максимумов потоков галактических космических лучей (ГКЛ) при положительной (A > 0, минимумы нечетных–четных циклов) и отрицательной (A < 0, минимумы нечетных–четных циклов) полярности дипольного магнитного поля Солнца хорошо известно. При A > 0 наблюдается плоский максимум ГКЛ, а при A <0 – острый. Это различие связывают с влиянием дрейфового механизма распространения ГКЛ в глобальном магнитном поле гелиосферы, proxy которого можно считать полярное (дипольное) магнитное поле Солнца (Bpole). Однородный ряд данных по ГКЛ доступен с 1957 года, а наблюдения Bpole проводятся только с 1976 года. На примере нечетных (21-го, 23-го и 25-го) и четных (22-го и 24-го) циклов, для которых есть наблюдения Bpole и ГКЛ, исследуется гипотеза о том, что изменения величины и знака Bpole определяют основные тенденции развития всего цикла модуляции. Традиционно с началом 11-летнего цикла в долговременной модуляции ГКЛ связывают минимум числа солнечных пятен (Rz), но рост Rz не отражает все физические процессы на Солнце, способные модулировать ГКЛ в гелиосфере. Началом цикла модуляции (ноль на шкале времени) мы выбираем максимум ГКЛ при 10 ГВ и далее сравниваем методом наложения эпох темп счета нейтронного монитора Москва, величины Bpole и Rz. При таком выборе ноля наглядно видно различие временных профилей ГКЛ в четных и нечетных циклах. При уменьшении модуля Bpole потоки ГКЛ падают, преобладает конвективный механизм переноса и эффект дрейфового переноса не виден (нет явного разделения на четные и нечетные циклы). При увеличении модуля Bpole потоки ГКЛ растут, преобладает диффузионный механизм переноса ГКЛ, которому помогает или мешает дрейфовый механизм (при A > 0 или при A < 0). Потоки ГКЛ остаются постоянными при Bpole ~ const. Пятенная активность Rz несимметрична относительно момента переполюсовки (Bpole = 0), она ранняя в четных и поздняя в нечетных циклах. Обнаруженные тенденции позволяют качественно предсказать коридор возможных изменений Bpole и потоков ГКЛ на фазе спада 25 цикла и в минимуме 25–26, а также сделать эпигноз по наблюдениям ГКЛ и Rz возможных значения Bpole в 1957–1976 гг. (конец 19-го и весь 20-й цикл).
Полный текст
 
												
	                        Об авторах
А. Б. Струминский
Институт космических исследований РАН
							Автор, ответственный за переписку.
							Email: astrum@cosmos.ru
				                					                																			                												                	Россия, 							Москва						
А. В. Белов
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
														Email: astrum@cosmos.ru
				                					                																			                												                	Россия, 							Троицк						
Р. Т. Гущина
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
														Email: astrum@cosmos.ru
				                					                																			                												                	Россия, 							Троицк						
В. Г. Янке
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
														Email: yanke@izmiran.ru
				                					                																			                												                	Россия, 							Троицк						
И. Ю. Григорьева
Главная (Пулковская) астрономическая обсерватория РАН
														Email: astrum@cosmos.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Список литературы
- Гущина Р.Т., Белов А.В., Обридко В.Н., Шельтинг Б.Д. Проявления циклических вариаций магнитного поля Солнца в долговременной модуляции космических лучей // Геомагнетизм и аэрономия. Т. 48. № 5. С. 598–604. 2008
- Крайнев М.Б., Базилевская Г.A., Калинин М.С., Михайлов В.В., Свиржевская А.К. Свиржевский Н.С. Пятьдесят лет исследования поведения интенсивности ГКЛ в периоды инверсии гелиосферного магнитного поля. I. Наблюдаемые эффекты //Солнечно-земная физика. Т. 9. № 4. С. 5−20. 2023
- Ныммик Р.А. Модель галактических космических лучей, Глава 1.6 в книге Модель космоса: научно-информационное издание в 2 т. / Под редакцией М.И. Панасюка, Л.С. Новикова. Т. 1: Физические условия в космическом пространстве. М.: КДУ, 2007. 872 с.: табл. ил.
- Обридко В.Н. Магнитные поля и индексы активности, параграф 1.4 Главы 1 в книге Плазменная гелиогеофизика. В 2 т. Т. I / Под ред. Л.М. Зеленого и И.С. Веселовского. М.: ФИЗМАТЛИТ, 2008. - 672 с.
- Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N. et al., (AMS Collaboration). Temporal Structures in Electron Spectra and Charge Sign Effects in Galactic Cosmic Rays // Phys. Rev. Lett. V. 130. 161001. 2023. https://doi.org/10.1103/PhysRevLett.130.161001
- Babcock H.W. The topology of the Sun’s magnetic field and the 22-year cycle //Astropys. J. V. 133. P. 572–578. 1961. https://doi.org/10.1086/147060
- Belov A. Large scale modulation: view from the Earth // Space Sci. Rev. V. 93. P. 79–105. 2000. https://doi.org/10.1023/A:1026584109817
- Charbonneau P. Dynamo models of the solar cycle // Living Reviews in Solar Physics. V. 17. Iss. 4. 2020. https://doi.org/10.1007/s41116-020-00025-6
- Cliver E.W. The Extended Cycle of Solar Activity and the Sun’s 22-Year Magnetic Cycle // Space Sci. Rev. V. 186. P. 169–189. 2014. https://doi.org/10.1007/s11214-014-0093-z
- Cliver E.W., Richardson I.G., Ling A.G. Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation // Space Sci. Rev. V. 176. P. 3–19. 2013. https://doi.org/10.1007/s11214-011-9746-3
- Fisk L.A., Axford W.I. Solar Modulation of Galactic Cosmic Rays, 1 // J. Geophys. Res. V. 74. N 21. P. 4973–4986.1969. https://doi.org/10.1029/JA074i021p04973
- Gleeson L.J., Axford W.I. Cosmic Rays in the Interplanetary Medium // Astrophys. J. V. 149. P. L115–L118. 1967. https://doi.org/10.1086/180070
- Hale G.E., Ellerman F., Nicholson S.B., Joy A.H. The magnetic polarity of Sun-spot // Astrophys. J. V. 49. P.153. 1919. https://doi.org/10.1086/142452
- Hathaway D.H. The Solar Cycle // Living Rev. Solar Phys. V. 12. P. 4. 2015. https://doi.org/10.1007/lrsp-2015-4
- Jha B.K. and Upton L.A. Predicting the Timing of the Solar Cycle 25 Polar Field Reversal // Astrophys. J. V. 962. P. L15-L21. 2024. https://doi.org/10.3847/2041-8213/ad20d2
- Jiang J., Cameron R.H., and Schüssler M. The cause of the weak solar cycle 24 // Astrophys. J. Lett. V. 820. P. L28-L34. 2015. https://doi.org/10.1088/2041-8205/808/1/L28
- Jokipii J.R, Levy E.H., and Hubbard W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation // Astrophys. J. V. 213. P. 861−868. 1977. https://doi.org/10.1086/155218
- Jokipii J.R., Thomas B. Effects of drift on the transport of cosmic rays IV. Modulation by a wavy interplanetary current sheet // Astrophys. J. V. 243. P. 1115−1122.1981. https://doi.org/10.1086/158675
- Khabarova O., Malandraki O., Malova H., Kislov R. et al. Current Sheets, Plasmoids and Flux Ropes in the Heliosphere Part I. 2-D or not 2-D? General and Observational Aspects // Space Sci. Rev. V. 217:38. 2021. https://doi.org/10.1007/s11214-021-00814-x
- Kumar P., Nagy M., Lemerle A., Karak B.B., Petrovay K. The polar precursor method for solar cycle prediction: comparison of predictors and their temporal range// Astrophys. J. V. 909. P 87−99. 2021. https://doi.org/10.3847/1538-4357/abdbb4
- Kumar P., Karak B.B., Sreedevi A. Variabilities in the polar field and solar cycle due to irregular properties of bipolar magnetic regions // MNRAS. V. 530. P. 2895–2905. 2024. https://doi.org/10.1093/mnras/stae1052
- Leighton R.B. Transport of magnetic fields on the Sun // Astrophys. J. V. 140. P. 1547–1562. 1964. https://doi.org/10.1086/148058
- Leighton R.B. A magneto-kinematic model of the solar cycle //Astrophys. J. V. 156. P. 1–26. 1969. https://doi.org/10.1086/149943
- Liu W., Guo J., Wang Yu., and Slaba T.C. A Comprehensive Comparison of Various Galactic Cosmic-Ray Models to the State-of the-art Particle and Radiation Measurements // Astrophys. J. V. 271. P. 18−47. 2024. https://doi.org/10.3847/1538-4365/ad18ad
- Martin S.F. Observations key to understanding solar cycles: a review // Front. Astron. Space Sci. V. 10:1177097. 2024. https://doi.org/10.3389/fspas.2023.1177097
- Nandy D. Progress in Solar Cycle Predictions: Sunspot Cycles 24–25 in Perspective // Solar Phys. V. 296:54. 2021. https://doi.org/10.1007/s11207-021-01797-2
- Owens M.J., Lockwood M., Barnard L. A. et al. Extreme Space-Weather Events and the Solar Cycle // Solar Phys. V. 296:82. 2021. https://doi.org/10.1007/s11207-021-01831-3
- Pal S. and Nandy D. Algebraic quantification of the contribution of active regions to the Sun’s dipole moment: applications to century-scale polar field estimates and solar cycle forecasting // MNRAS. V. 531. P. 1546–1553. 2024. https://doi.org/10.1093/mnras/stae1205
- Parker E.N. The Passage of Energetic Particles through Interplanetary Space //Planetary Space Sci. V. 13. P. 9–49. 1965. https://doi.org/10.1016/0032-0633(65)90131-5
- Paouris E., Mavromichalaki H., Belov A, Gushchina R., Yanke V. Galactic Cosmic Ray Modulation and the Last Solar Minimum // Solar Phys. 2012. V. 280. P. 255–271. https://doi.org/10.1007/s11207-012-0051-4
- Petrovay K. Solar cycle prediction // Living Rev. Sol. Phys. V. 17: 2. 2020. https://doi.org/10.1007/s41116-020-0022-z
- Svaalgaard L., Wilcox J. A View of Solar Magnetic Fields, the Solar Corona and the Solar Wind in Three Dimensions // Ann. Rev. Astron. Astrophys. V. 16. P. 429−443. 1978. https://doi.org/10.1146/annurev.aa.16.090178.002241
- Stozhkov Yu.I., Makhmutov V.S., Svirzhevsky N.S. About cosmic ray modulation in the heliosphere // Universe. Vol. 8. Iss. 11. P. 558. 2022. https://doi.org/10.3390/universe8110558
- Wang Y.-M. The Radial Interplanetary Field Strength at Sunspot Minimum as Polar Field Proxy and Solar Cycle Predictor //Astrophys. J. Lett. V. 96. P. L27-L36. 2024. https://doi.org/10.3847/2041-8213/ad1c65
- Yanke V.G., Belov A.V., Gushchina R.T., Kobelev P.G., Trefilova L.A. Forecast of Modulation of Cosmic Rays with Rigidity of 10 GV in the 25th Solar Activity Cycle // Geomagn. Aeronomy. V. 64. N 2. P. 201–210. 2024. https://doi.org/10.1134/S0016793223601072
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




