Kinetics of Paracetamol Degradation in Aqueous Solution by the Action of Dielectric Barrier Discharge in Oxygen
- Authors: Ignatiev A.A.1, Gushchin A.A.1, Grinevich V.I.1, Kvitkova E.Y.1, Izvekova A.A.1, Rybkin V.V.1
- 
							Affiliations: 
							- Ivanovo State University of Chemistry and Technology
 
- Issue: Vol 57, No 6 (2023)
- Pages: 485-489
- Section: PLASMA CHEMISTRY
- URL: https://cardiosomatics.ru/0023-1193/article/view/661468
- DOI: https://doi.org/10.31857/S0023119323060049
- EDN: https://elibrary.ru/QPVZQP
- ID: 661468
Cite item
Abstract
The kinetics of decomposition of paracetamol in its aqueous solution by the action of atmosphericpressure dielectric barrier discharge (DBD) in oxygen has been studied. Degradation rate constants, energy yields, and degrees of degradation have been determined for various discharge powers and paracetamol concentrations. It is shown that the degradation products are carboxylic acids, aldehydes, CO, and CO2.
Keywords
About the authors
A. A. Ignatiev
Ivanovo State University of Chemistry and Technology
														Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
A. A. Gushchin
Ivanovo State University of Chemistry and Technology
														Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
V. I. Grinevich
Ivanovo State University of Chemistry and Technology
														Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
E. Yu. Kvitkova
Ivanovo State University of Chemistry and Technology
														Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
A. A. Izvekova
Ivanovo State University of Chemistry and Technology
														Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
V. V. Rybkin
Ivanovo State University of Chemistry and Technology
							Author for correspondence.
							Email: rybkin@isuct.ru
				                					                																			                												                								Ivanovo, 153000 Russia						
References
- Antunes S.C., Freitas R., Figueira E., Gonçalves F., Nunes B. // Environ. Sci. Pollut. Res. 2013. V. 20. P. 6658.
- López Zavala M.A., Estrada E.E. // Water. 2016. V. 8. P. 383.
- Roberts P.H., Thomas K.V. // Sci. Total Environ. 2006. V. 356. P. 143.
- Blair B.D., Crago J.P., Hedman C.J., Treguer R.J.F., Magruder C., Royer L.S., Klaper R.D. // Sci. Total Environ. 2013. V. 444. P. 515.
- Yu Y., Wu L., Chang A.C. Sci. // Total Environ. 2013. V. 442. P. 310.
- Ansari M., Moussavi G., Ehrampoosh M.H., Giannakis S. // J. Water Process Eng. 2023. V. 51. P. 103371.
- Magureanu M., Bilea F., Bradu C., Hong D. // J. Hazard. Mater. 2021. V. 417. P. 125481.
- Grinevich V.I., Kvitkova E.Y., Plastinina N.A., Rybkin V.V. // Plasma Chem. Plasma Process. 2011. V. 31. № 4. P. 573.
- Bird R.B., Stewart W.E., Lightfoot E.N. Transport phenomena. New York, Wiley. 1960. 895 p.
- Baloul Y., Aubry O., Rabat H., Colas C., Maunit B., Hong D. // Eur. Phys. J. Appl. Phys. 2017. V. 79. № 3. P. 30802.
- Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. М. : Химия. 1984, 448 с.
- ГОСТ Р 55227-2012. Вода. Методы определения содержания формальдегида.
- Wang Q.H., Li J.Y., Liu Y., Lin L., Ri G.L., Zhu J.P., He L., Zhong L.L. // Talanta. 2017. V. 165. P. 709.
- Gushchin A.A., Grinevich V.I., Shulyk V.Ya., Kvitkova E.Yu, Rybkin V.V. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 123.
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133.
- Bobkova E.S., Khodor Ya.V., Kornilova O.N., Rybkin V.V. // High Temp. 2014. V. 52. №. 4. P. 511.
- Xiao-Y. P., Xiu-Ch. Q. // Ecotoxicol. Environ. Saf. 2019. V. 180. P. 610.
- Zhang G., Sun Y., Zhang C., Yu Z. // J. Hazard. Mater. 2017. V. 323. P. 719.
- Loegager T., Sehested K. // J. Phys. Chem. 1993. V. 97. № 39. P. 10047.
- Goldstein S., Squadrito G.L., Pryor W.A., Czapski G. // Free Radic. Biol. Med. 1996. V. 21. № 7. P. 965.
- Van Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D: Appl. Phys. 2013. V. 46 № 17. P. 175203.
- Daito S., Tochikubo F., Watanabe T. // Jap. J. Appl. Phys. 2000. 39 № 8R. P. 4914.
- Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206.
- Slamani S., Abdelmalek F., Ghezzar M.R., Addou A. // J. Photochem. Photobiol. A. 2018. V. 359. P. 1.
- Bobkova E.S., Krasnov D.S., Sungurova A.V., Rybkin V.V., Choi H.-S. // Korean J. Chem. Eng. 2016. V. 33. № 5. P. 1620.
- Бобкова Е.С., Краснов Д.С., Сунгурова А.В., Шишкина А.И., Шикова Т.Г. // Химия высоких энергий. 2013. Т. 47. № 2. С. 142.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



