Thermal evolution of phosphates and sulfates witn an antiperovskite-type structure: thermal expansion and phase transitions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this study, we present an investigation of the thermal behavior of natural and synthetic phosphates and sulfates with an antiperovskite-type structure, where the anion-centered octahedron is the main structural unit. We discuss examples of the thermal behavior of antiperovskites with classical and hexagonal 3D frameworks (K3SO4F, Rb3SO4F, synthetic analogue of kogarkoite Na3SO4F, galeite Na15(SO4)5ClF4, schairerite Na21(SO4)7ClF6); with one-dimensional (1D) chains of corner- and face-sharing octahedra (nacaphite Na2CaPO4F and its synthetic dimorph, synthetic analogue of moraskoite Na2CaPO4F, nefedovite Na5Ca4(PO4)4F); and with clusters represented by trimers of anion-centered octahedra (synthetic analogue of arctite (Na5Ca)Ca6Ba(PO4)6F3). Based on the obtained data, some general patterns were identified, depending on the structural topology and thermal stability of antiperovskites.

Full Text

Restricted Access

About the authors

M. S. Avdontceva

St. Petersburg State University

Author for correspondence.
Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg

A. A. Zolotarev

St. Petersburg State University

Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg

M. G. Krzhizhanovskaya

St. Petersburg State University

Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg

S. V. Krivovichev

St. Petersburg State University; Kola Science Centre RAS

Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg; Apatity

References

  1. Sabrowsky A.A., Sitta S., Hippler K. et al. // Acta Cryst. C. 1990. V. 46. P. 736. https://doi.org/10.1107/S010827018900990X
  2. Krivovichev S.V. // Coord. Chem. Rev. 2024. V. 498. P. 215484. https://doi.org/10.1016/j.ccr.2023.215484
  3. Hidden W.E., Mackintosh J.B. // Am. J. Sci. 1888. V. 36. P. 463.
  4. Pabst A. // Z. Kristallogr. 1934. B. 89. S. 514. https://doi.org/10.1524/zkri.1934.89.1.514
  5. Krivovichev S.V. // Z. Kristallogr. 2008. V. 223. P. 109. https://doi.org/10.1524/zkri.2008.0008
  6. Karwowski Ł., Kusz J., Muszyński A. et al. // Mineral. Mag. 2015. V. 79 (2). P. 387. https://doi.org/10.1180/minmag.2015.079.2.16
  7. Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. // Mineral. Mag. 2023. V. 87 (6). P. 839. https://doi.org/10.1180/mgm.2023.50
  8. Avdontceva M.S., Shablinskii A.P., Krzhizhanovskaya M.G. et al. // Phys. Chem. Miner. 2024. V. 51 (2). 13. https://doi.org/10.1007/s00269-024-01276-7
  9. Avdontceva M.S., Krivovichev S.V., Yakovenchuk V.N. // Minerals. 2021. V. 11 (2). P. 186. https://doi.org/10.3390/min11020186
  10. Khomyakov A.P., Bykova A.V., Kurova T.A. // Int. Geol. Rev. 1983. V. 25 (6). P. 739. https://doi.org/10.1080/00206818309466761
  11. Sokolova E.V., Yamnova N.A., Egorov-Tismenko Y.K. et al. // Sov. Phys. Dokl. 1984. V. 29. P. 5.
  12. Galuskin E.V., Krüger B., Galuskina I.O. et al. // Minerals. 2018. V. 8 (3). P. 109. https://doi.org/10.3390/min8030109
  13. Galuskina I.O., Gfeller F., Galuskin E. et al. // Mineral. Mag. 2019. V. 83 (1). P. 81. https://doi.org/10.1180/minmag.2017.081.095
  14. Galuskin E.V., Gfeller F., Armbruster T. et al. // Mineral. Mag. 2015. V. 79 (5). P. 1061. https://doi.org/10.1180/minmag.2015.079.5.03
  15. Galuskin E.V., Cametti G., Galuskina I.O. et al. // Mineral. Mag. 2024. CNMNC Newsletter 79. Eur. J. Mineral. 36. https://doi.org/10.5194/ejm-36-525-2024
  16. Galuskin E.V., Gfeller F., Galuskina I.O. et al. // Mineral. Mag. 2015. V. 79 (5). P. 1073. https://doi.org/10.1180/minmag.2015.079.5.04
  17. Galuskin E.V., Gfeller F., Galuskina I.O. et al. // Mineral. Mag. 2017. V. 81 (3). P. 499. https://doi.org/10.1180/minmag.2016.080.105
  18. Galuskin E.V., Krüger B., Galuskina I.O. et al. // Am. Mineral. 2018. V. 103 (10). P. 1699. https://doi.org/10.2138/am-2018-6493
  19. Krüger B., Krüger H., Galuskin E.V. et al. // Acta Cryst. B. 2018. V. 74 (6). P. 492. https://doi.org/10.1107/s2052520618012271
  20. Galuskin E.V., Galuskina I.O., Krüger H. et al. // Can. Mineral. 2021. V. 59 (1). P. 191. https://doi.org/10.3749/canmin.2000035
  21. Xia W., Zhao Y., Zhao F. et al. // Chem. Rev. 2022. V. 122 (3). P. 3763. https://doi.org/10.1021/acs.chemrev.1c00594
  22. Rasaki S.A., Chen Z., Thomas T. et al. // Mater. Res. Bull. 2021. V. 133. 111014. https://doi.org/10.1016/j.materresbull.2020.111014
  23. Hoffmann N., Cerqueira T.F.T., Schmidt J. et al. // Npj. Comput Mater. 2022. V. 8. P. 150. https://doi.org/10.1038/s41524-022-00817-4
  24. Iyo A., Hase I., Fujiihisa H. et al. // Inorg. Chem. 2021. V. 60 (23). P. 18017. https://doi.org/10.1021/acs.inorgchem.1c02604
  25. Zang B., Liu X., Kan X. et al. // Mater. Today Commun. 2023. V. 34. 105063. https://doi.org/10.1016/j.mtcomm.2022.105063
  26. Kiecana A., Schaefers W., Thijs et al. // J. Magn. Magn. Mater. 2023. V. 577. 170782. https://doi.org/10.1016/j.jmmm.2023.170782
  27. Wang B.S., Tong Y.P., Sun L.J. et al. // Appl. Phys. Lett. 2009. V. 95. 222509. https://doi.org/10.1063/1.3268786
  28. Li C.C., Wang B.S., Lin S. et al. // J. Magn. Magn. Mater. 2021. V. 323 (17). P. 2223. https://doi.org/10.1016/j.jmmm.2011.03.038
  29. Sullivan E., Avdeev M., Blom D.A. et al. // J. Solid State Chem. 2015. V. 230. P. 279. https://doi.org/10.1016/j.jssc.2015.07.018
  30. Zhao S., Liao S., Qiu Z. et al. // Ceram. Int. 2023. V. 49 (7). P. 11285. https://doi.org/10.1016/j.ceramint.2022.11.327
  31. Li M., Zhang X., Xiong Z. et al. // Angew. Chem. Int. Ed. 2022. V. 61 (42). E202211151. https://doi.org/10.1002/anie.202211151
  32. Takenaka K., Asano M., Misawa H. et al. // Appl. Phys. Lett. V. 92. Р. 011927. https://doi.org/10.1063/1.2831715
  33. Tan S., Gao C., Wang C. et al. // Dalton Trans. 2020. V. 49. P. 10407. https://doi.org/10.1039/D0DT02221G
  34. Хомяков А.П., Нечелюстов Г.Н., Дорохова Г.И. // Зап. Рос. минерал. о-ва. 1983. Т. 112. № 4. С. 479.
  35. Когарко Л.Н. // Докл. АН СССР. 1961. Т. 139. № 2. С. 435.
  36. Хомяков А.П., Казакова М.Е., Пущаровский Д.Ю. // Зап. Рос. минерал. о-ва. 1980. Т. 109. № 1. С. 50.
  37. Хомяков А.П., Нечелюстов Г.Н., Соколова Е.А. и др. // Зап. Рос. минерал. о-ва. 1992. Т. 121. № 1. С. 105.
  38. Хомяков А.П., Курова Т.А., Чистякова Н. // Зап. Рос. минерал. о-ва. 1983. Т. 112. С. 456.
  39. Pabst A., Sawyer D.L., Switzer G. // Am. Mineral. 1955. V. 66. P. 1658.
  40. Foshag W.F. // Am. Mineral. 1931. V. 16. P. 133.
  41. Avdontceva M.S., Krzhizhanovskaya M.G., Krivovichev S.V. et al. // J. Solid State Chem. 2023. V. 319. 123779. https://doi.org/10.1016/j.jssc.2022.123779
  42. Авдонцева М.С., Золотарев А.А., Кривовичев С.В. // Физика и химия стекла. Т. 50. № 2. С. 214. https://doi.org/10.31857/S0132665124020098
  43. Bolling S.D., Reynolds J.G., Ely T.M. et al. // J. Radioanal. Nucl. Chem. 2019. V. 323. P. 329. https://doi.org/10.1007/s10967-019-06924-9
  44. Avdontceva M.S., Zolotarev A.A., Krivovichev S.V. // J. Solid State Chem. 2015. V. 231. P. 42. https://doi.org/10.1016/j.jssc.2015.07.033
  45. Skakle J.M.S., Fletcher J.G., West A.R. // J. Chem Soc. Dalton Trans. 1996. V. 12. P. 2497. https://doi.org/10.1039/DT9960002497
  46. Downs R.T. // Rev. Mineral. Geochem. 2000. V. 41. P. 61. https://doi.org/10.2138/rmg.2000.41.3
  47. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  48. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // Appl. Cryst. 2009. V. 42. P. 339. http://dx.doi.org/10.1107/S0021889808042726
  49. Бубнова Р.С., Фирсова В.А., Филатов С.К. // Физика и химия стекла. 2013. Т. 39. № 3. С. 347.
  50. Momma K., Izumi F. // Appl. Cryst. 2011. V. 44. P. 1272. http://dx.doi.org/10.1107/S0021889811038970
  51. Glazer A.M. // Acta Cryst. B. 1972. V. 28. P. 3384. https://doi.org/10.1107/S0567740872007976
  52. Avdontceva M.S., Zolotarev A.A., Shablinskii A.P. et al. // Symmetry. 2023. V. 15 (10). P. 1871. https://doi.org/10.3390/sym15101871
  53. Albrecht R., Menning H., Doert T. et al. // Acta Cryst. E. 2020. V. 76 (10). P. 1638. https://doi.org/10.1107/S2056989020012359
  54. Avdontceva M.S., Krzhizhanovskaya M.G., Krivovichev S.V. et al. // Phys. Chem. Miner. 2015. V. 42. P. 671. https://doi.org/10.1007/s00269-015-0753-x
  55. Krivovichev S.V., Yakovenchuk V.N., Ivanyuk G.Yu. et al. // Can. Mineral. 2007. V. 45 (4). P. 915. https://doi.org/10.2113/gscanmin.45.4.915
  56. Sokolova E., Kabalov Yu.K., Ferraris G. et al. // Can. Mineral. 1999. V. 37 (1). P. 83.
  57. Nuss J., Mühle K., Hayama V. et al. // Acta Cryst. B. 2015. V. 71. P. 300. https://doi.org/10.1107/S2052520615006150
  58. Krivovichev S.V. // Mineral. Mag. 2013. V. 77. P. 275. https://doi.org/10.1180/minmag.2013.077.3.05
  59. Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
  60. Krivovichev S.V., Krivovichev V.G., Hazen R.M. et al. // Mineral. Mag. 2022. V. 86. P. 183. https://doi.org/10.1180/mgm.2022.23
  61. Филатов С.К. // Кристаллография. 2011. Т. 56. С. 1019.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Crystal structures: Na3OCl, octahedron [ONa6] (a); sulfohalite Na6(SO4)2FCl, octahedra [FNa6] and [ClNa6] linked by common vertices (b).

Download (28KB)
3. Fig. 2. Projections onto the (010) plane of the crystal structures: stretcherite BaCa12(SiO4)4(PO4)2F2O (zadovite group) (a); aravaite BaCa12(SiO4)4(PO4)2F2O (b); aryegylatite BaCa12(SiO4)4(PO4)2F2O (arctite group) (c). The dotted line shows the anion-centered modules.

Download (62KB)
4. Fig. 3. Crystal structures of low- and high-temperature modifications of K3SO4F (a) and Rb3SO4F (b) in projections onto the (010) and (001) planes and the thermal expansion coefficients for both compounds.

Download (51KB)
5. Fig. 4. Crystal structures of low- and high-temperature modifications of kogarkoite (a), shirerite (b), galeite (c) and thermal expansion coefficients.

Download (67KB)
6. Fig. 5. Crystal structures of polymorphic modifications of Na2CaPO4F in projection onto the plane (010) (a, b) and morascoite (c), as well as thermal expansion coefficients.

Download (83KB)
7. Fig. 6. Crystal structure of nefedovite in projection onto planes (001) and (010), coefficients of thermal expansion tensor (a), rotation of tetrahedrons in the crystal structure of nefedovite (b).

Download (61KB)
8. Fig. 7. Crystal structure of arctite in projection onto the (010) plane and thermal expansion coefficients. The dotted line shows a trimer of anion-centered octahedra.

Download (41KB)

Note

К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета


Copyright (c) 2025 Russian Academy of Sciences