Thermal evolution of phosphates and sulfates witn an antiperovskite-type structure: thermal expansion and phase transitions
- Authors: Avdontceva M.S.1, Zolotarev A.A.1, Krzhizhanovskaya M.G.1, Krivovichev S.V.1,2
-
Affiliations:
- St. Petersburg State University
- Kola Science Centre RAS
- Issue: Vol 70, No 2 (2025)
- Pages: 323-335
- Section: REVIEWS
- URL: https://cardiosomatics.ru/0023-4761/article/view/682967
- DOI: https://doi.org/10.31857/S0023476125020075
- EDN: https://elibrary.ru/BYOBEM
- ID: 682967
Cite item
Abstract
In this study, we present an investigation of the thermal behavior of natural and synthetic phosphates and sulfates with an antiperovskite-type structure, where the anion-centered octahedron is the main structural unit. We discuss examples of the thermal behavior of antiperovskites with classical and hexagonal 3D frameworks (K3SO4F, Rb3SO4F, synthetic analogue of kogarkoite Na3SO4F, galeite Na15(SO4)5ClF4, schairerite Na21(SO4)7ClF6); with one-dimensional (1D) chains of corner- and face-sharing octahedra (nacaphite Na2CaPO4F and its synthetic dimorph, synthetic analogue of moraskoite Na2CaPO4F, nefedovite Na5Ca4(PO4)4F); and with clusters represented by trimers of anion-centered octahedra (synthetic analogue of arctite (Na5Ca)Ca6Ba(PO4)6F3). Based on the obtained data, some general patterns were identified, depending on the structural topology and thermal stability of antiperovskites.
Full Text

About the authors
M. S. Avdontceva
St. Petersburg State University
Author for correspondence.
Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg
A. A. Zolotarev
St. Petersburg State University
Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg
M. G. Krzhizhanovskaya
St. Petersburg State University
Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg
S. V. Krivovichev
St. Petersburg State University; Kola Science Centre RAS
Email: m.avdontceva@spbu.ru
Russian Federation, St. Petersburg; Apatity
References
- Sabrowsky A.A., Sitta S., Hippler K. et al. // Acta Cryst. C. 1990. V. 46. P. 736. https://doi.org/10.1107/S010827018900990X
- Krivovichev S.V. // Coord. Chem. Rev. 2024. V. 498. P. 215484. https://doi.org/10.1016/j.ccr.2023.215484
- Hidden W.E., Mackintosh J.B. // Am. J. Sci. 1888. V. 36. P. 463.
- Pabst A. // Z. Kristallogr. 1934. B. 89. S. 514. https://doi.org/10.1524/zkri.1934.89.1.514
- Krivovichev S.V. // Z. Kristallogr. 2008. V. 223. P. 109. https://doi.org/10.1524/zkri.2008.0008
- Karwowski Ł., Kusz J., Muszyński A. et al. // Mineral. Mag. 2015. V. 79 (2). P. 387. https://doi.org/10.1180/minmag.2015.079.2.16
- Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. // Mineral. Mag. 2023. V. 87 (6). P. 839. https://doi.org/10.1180/mgm.2023.50
- Avdontceva M.S., Shablinskii A.P., Krzhizhanovskaya M.G. et al. // Phys. Chem. Miner. 2024. V. 51 (2). 13. https://doi.org/10.1007/s00269-024-01276-7
- Avdontceva M.S., Krivovichev S.V., Yakovenchuk V.N. // Minerals. 2021. V. 11 (2). P. 186. https://doi.org/10.3390/min11020186
- Khomyakov A.P., Bykova A.V., Kurova T.A. // Int. Geol. Rev. 1983. V. 25 (6). P. 739. https://doi.org/10.1080/00206818309466761
- Sokolova E.V., Yamnova N.A., Egorov-Tismenko Y.K. et al. // Sov. Phys. Dokl. 1984. V. 29. P. 5.
- Galuskin E.V., Krüger B., Galuskina I.O. et al. // Minerals. 2018. V. 8 (3). P. 109. https://doi.org/10.3390/min8030109
- Galuskina I.O., Gfeller F., Galuskin E. et al. // Mineral. Mag. 2019. V. 83 (1). P. 81. https://doi.org/10.1180/minmag.2017.081.095
- Galuskin E.V., Gfeller F., Armbruster T. et al. // Mineral. Mag. 2015. V. 79 (5). P. 1061. https://doi.org/10.1180/minmag.2015.079.5.03
- Galuskin E.V., Cametti G., Galuskina I.O. et al. // Mineral. Mag. 2024. CNMNC Newsletter 79. Eur. J. Mineral. 36. https://doi.org/10.5194/ejm-36-525-2024
- Galuskin E.V., Gfeller F., Galuskina I.O. et al. // Mineral. Mag. 2015. V. 79 (5). P. 1073. https://doi.org/10.1180/minmag.2015.079.5.04
- Galuskin E.V., Gfeller F., Galuskina I.O. et al. // Mineral. Mag. 2017. V. 81 (3). P. 499. https://doi.org/10.1180/minmag.2016.080.105
- Galuskin E.V., Krüger B., Galuskina I.O. et al. // Am. Mineral. 2018. V. 103 (10). P. 1699. https://doi.org/10.2138/am-2018-6493
- Krüger B., Krüger H., Galuskin E.V. et al. // Acta Cryst. B. 2018. V. 74 (6). P. 492. https://doi.org/10.1107/s2052520618012271
- Galuskin E.V., Galuskina I.O., Krüger H. et al. // Can. Mineral. 2021. V. 59 (1). P. 191. https://doi.org/10.3749/canmin.2000035
- Xia W., Zhao Y., Zhao F. et al. // Chem. Rev. 2022. V. 122 (3). P. 3763. https://doi.org/10.1021/acs.chemrev.1c00594
- Rasaki S.A., Chen Z., Thomas T. et al. // Mater. Res. Bull. 2021. V. 133. 111014. https://doi.org/10.1016/j.materresbull.2020.111014
- Hoffmann N., Cerqueira T.F.T., Schmidt J. et al. // Npj. Comput Mater. 2022. V. 8. P. 150. https://doi.org/10.1038/s41524-022-00817-4
- Iyo A., Hase I., Fujiihisa H. et al. // Inorg. Chem. 2021. V. 60 (23). P. 18017. https://doi.org/10.1021/acs.inorgchem.1c02604
- Zang B., Liu X., Kan X. et al. // Mater. Today Commun. 2023. V. 34. 105063. https://doi.org/10.1016/j.mtcomm.2022.105063
- Kiecana A., Schaefers W., Thijs et al. // J. Magn. Magn. Mater. 2023. V. 577. 170782. https://doi.org/10.1016/j.jmmm.2023.170782
- Wang B.S., Tong Y.P., Sun L.J. et al. // Appl. Phys. Lett. 2009. V. 95. 222509. https://doi.org/10.1063/1.3268786
- Li C.C., Wang B.S., Lin S. et al. // J. Magn. Magn. Mater. 2021. V. 323 (17). P. 2223. https://doi.org/10.1016/j.jmmm.2011.03.038
- Sullivan E., Avdeev M., Blom D.A. et al. // J. Solid State Chem. 2015. V. 230. P. 279. https://doi.org/10.1016/j.jssc.2015.07.018
- Zhao S., Liao S., Qiu Z. et al. // Ceram. Int. 2023. V. 49 (7). P. 11285. https://doi.org/10.1016/j.ceramint.2022.11.327
- Li M., Zhang X., Xiong Z. et al. // Angew. Chem. Int. Ed. 2022. V. 61 (42). E202211151. https://doi.org/10.1002/anie.202211151
- Takenaka K., Asano M., Misawa H. et al. // Appl. Phys. Lett. V. 92. Р. 011927. https://doi.org/10.1063/1.2831715
- Tan S., Gao C., Wang C. et al. // Dalton Trans. 2020. V. 49. P. 10407. https://doi.org/10.1039/D0DT02221G
- Хомяков А.П., Нечелюстов Г.Н., Дорохова Г.И. // Зап. Рос. минерал. о-ва. 1983. Т. 112. № 4. С. 479.
- Когарко Л.Н. // Докл. АН СССР. 1961. Т. 139. № 2. С. 435.
- Хомяков А.П., Казакова М.Е., Пущаровский Д.Ю. // Зап. Рос. минерал. о-ва. 1980. Т. 109. № 1. С. 50.
- Хомяков А.П., Нечелюстов Г.Н., Соколова Е.А. и др. // Зап. Рос. минерал. о-ва. 1992. Т. 121. № 1. С. 105.
- Хомяков А.П., Курова Т.А., Чистякова Н. // Зап. Рос. минерал. о-ва. 1983. Т. 112. С. 456.
- Pabst A., Sawyer D.L., Switzer G. // Am. Mineral. 1955. V. 66. P. 1658.
- Foshag W.F. // Am. Mineral. 1931. V. 16. P. 133.
- Avdontceva M.S., Krzhizhanovskaya M.G., Krivovichev S.V. et al. // J. Solid State Chem. 2023. V. 319. 123779. https://doi.org/10.1016/j.jssc.2022.123779
- Авдонцева М.С., Золотарев А.А., Кривовичев С.В. // Физика и химия стекла. Т. 50. № 2. С. 214. https://doi.org/10.31857/S0132665124020098
- Bolling S.D., Reynolds J.G., Ely T.M. et al. // J. Radioanal. Nucl. Chem. 2019. V. 323. P. 329. https://doi.org/10.1007/s10967-019-06924-9
- Avdontceva M.S., Zolotarev A.A., Krivovichev S.V. // J. Solid State Chem. 2015. V. 231. P. 42. https://doi.org/10.1016/j.jssc.2015.07.033
- Skakle J.M.S., Fletcher J.G., West A.R. // J. Chem Soc. Dalton Trans. 1996. V. 12. P. 2497. https://doi.org/10.1039/DT9960002497
- Downs R.T. // Rev. Mineral. Geochem. 2000. V. 41. P. 61. https://doi.org/10.2138/rmg.2000.41.3
- Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // Appl. Cryst. 2009. V. 42. P. 339. http://dx.doi.org/10.1107/S0021889808042726
- Бубнова Р.С., Фирсова В.А., Филатов С.К. // Физика и химия стекла. 2013. Т. 39. № 3. С. 347.
- Momma K., Izumi F. // Appl. Cryst. 2011. V. 44. P. 1272. http://dx.doi.org/10.1107/S0021889811038970
- Glazer A.M. // Acta Cryst. B. 1972. V. 28. P. 3384. https://doi.org/10.1107/S0567740872007976
- Avdontceva M.S., Zolotarev A.A., Shablinskii A.P. et al. // Symmetry. 2023. V. 15 (10). P. 1871. https://doi.org/10.3390/sym15101871
- Albrecht R., Menning H., Doert T. et al. // Acta Cryst. E. 2020. V. 76 (10). P. 1638. https://doi.org/10.1107/S2056989020012359
- Avdontceva M.S., Krzhizhanovskaya M.G., Krivovichev S.V. et al. // Phys. Chem. Miner. 2015. V. 42. P. 671. https://doi.org/10.1007/s00269-015-0753-x
- Krivovichev S.V., Yakovenchuk V.N., Ivanyuk G.Yu. et al. // Can. Mineral. 2007. V. 45 (4). P. 915. https://doi.org/10.2113/gscanmin.45.4.915
- Sokolova E., Kabalov Yu.K., Ferraris G. et al. // Can. Mineral. 1999. V. 37 (1). P. 83.
- Nuss J., Mühle K., Hayama V. et al. // Acta Cryst. B. 2015. V. 71. P. 300. https://doi.org/10.1107/S2052520615006150
- Krivovichev S.V. // Mineral. Mag. 2013. V. 77. P. 275. https://doi.org/10.1180/minmag.2013.077.3.05
- Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
- Krivovichev S.V., Krivovichev V.G., Hazen R.M. et al. // Mineral. Mag. 2022. V. 86. P. 183. https://doi.org/10.1180/mgm.2022.23
- Филатов С.К. // Кристаллография. 2011. Т. 56. С. 1019.
Supplementary files

Note
К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета