Structure and optical properties of langasite family crystals (La1–xNdx)3Ga5SiO14 (x = 0, 0.4, 0.6, 1)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structure and optical properties of crystals from the langasite family (La1 - xNdх)3Ga5SiO14 with different Nd content were investigated. The rotation of the light polarization plane, ρ, was calculated for these crystals from measured transmission spectra in polarized light. It is shown that for small values of ρ (~3-5 degrees/mm), it is necessary to use transmission spectra not with parallel and crossed polarizers, as is usually done, but at different angles between them, for example ±45°, to obtain better results. Circular dichroism measurements of these crystals were performed. Using Kramers-Kronig relations, the connection between the circular dichroism bands and the rotation of the light polarization plane in the absorption band region was determined. Dispersion curves of ρ values were calculated, taking into account absorption in the wavelength range of 400–1000 nm for crystals (La0.6Nd0.4)3Ga5SiO14, (La0.4Nd0.6)3Ga5SiO14, Nd3Ga5SiO14, and compared with the dispersion of ρ for langasite crystal La3Ga5SiO14. Average refractive indices and optical activity parameters of these crystals were calculated from structural data. It is shown that the dependence of the average refractive indices and ρ values on the parameters of the elementary cell, calculated under the assumption of no absorption, is linear. However, such a linear dependence is not observed for experimental ρ values, which is associated with the influence of absorption and the peculiarities of the structure (nonlinear change in the geometry of optically active regions of electron density upon replacing part of La with Nd).

Texto integral

Acesso é fechado

Sobre autores

T. Golovina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: tatgolovina@mail.ru
Rússia, Moscow

A. Konstantinova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Rússia, Moscow

A. Dudka

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Rússia, Moscow

A. Butashin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Rússia, Moscow

B. Umanskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Rússia, Moscow

N. Kozlova

MISiS National University of Science and Technology

Email: tatgolovina@mail.ru
Rússia, Moscow

V. Kasimova

MISiS National University of Science and Technology

Email: tatgolovina@mail.ru
Rússia, Moscow

E. Zabelina

MISiS National University of Science and Technology

Email: tatgolovina@mail.ru
Rússia, Moscow

Bibliografia

  1. Белоконева Е.Л., Симонов М.А., Милль Б.В. и др. // Докл. АН СССР. 1980. Т. 255. № 5. С. 1099.
  2. Каминский А.А., Милль Б.В., Саркисов С.Э. // Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. С. 197.
  3. АО Фомос-Материалы, Москва. https://newpiezo.com
  4. Kaminskii A.A., Belokoneva E.L., Mill B.V. et al. // Phys. Status Solidi. A. 1984. V. 86. P. 345. https://doi.org/10.1002/pssa.2210860139
  5. Mill B.V., Pisarevsky Yu.V. // Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA. P. 133.
  6. Mill B.V., Belokoneva E.L., Fukuda T. // Rus. J. Inorg. Chem. 1998. V. 43. P. 1032.
  7. Кугаенко О.М., Торшина Е.С., Петраков В.С. и др. // Изв. вузов. Материалы электронной техники. 2014. Т. 17. № 3. С. 174. https://doi.org/10.17073/1609-3577-2014-3-174-182
  8. Балышева О.Л., Клудзин В.В., Кулаков С.В., Дмитриев В.Ф. // Информационно-измерительные системы. 2012. № 6. С. 67.
  9. Андреев И.А., Дубовик М.Ф. // Письма в ЖЭТФ. 1984. Т. 10. С. 487.
  10. Kaminskii A.A., Mill B.V., Khodzhabagyan G.G. et al. // Phys. Status Solidi. A. 1983. V. 80. P. 387. https://doi.org/10.1002/pssa.2210800142
  11. Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
  12. Heimann R.B., Hengst M., Rossberg M., Bohm J. // Phys. Status Solidi. A. 2003. V. 198. № 2. P. 415. https://doi.org/10.1002/pssa.200306627
  13. Wei A., Wang B., Qi H., Yuan D. // Cryst. Res. Technol. 2006. V. 41. № 4. P. 371. https://doi.org/10.1002/crat.200510589
  14. Lyubutin I.S., Naumov P.G., Mill’ B.V. et al. // Phys. Rev. B. 2011. V. 84. P. 214425. https://doi.org/10.1103/PhysRevB.84.214425
  15. Милль Б.В., Буташин А.В., Ходжабагян Г.Г. и др. // Докл. АН СССР. 1982. Т. 264. С. 1385.
  16. Универсальная измерительная приставка Agilent Cary Universal Measurement Accessory (UMA) // Agilent Technologies. http://www.agilent.com/cs/library/technicaloverviews/public/5991-2529RU.pdf
  17. Бёккер Ю. Спектроскопия. М.: Техносфера, 2009. 528 с.
  18. Свиридов Д.Т., Свиридова Р.К., Смирнов Р.Ф. Оптические спектры ионов переходных металлов в кристаллах. М.: Наука, 1976. 267 с.
  19. Бурков В.И., Буташин А.В., Федотов Е.В. и др. // Кристаллография. 2005. Т. 50. № 6. С. 1031.
  20. Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
  21. Шувалов Л.А., Урусовская А.А., Желудев И.С. и др. Современная кристаллография. Т. 4. Физические свойства кристаллов. М.: Наука, 1981. 496 с.
  22. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
  23. Джерасси К. Дисперсия оптического вращения. М.: Изд-во иностранной литературы, 1962. 400 с.
  24. Rigaku Oxford Diffraction, 2018, CrysAlisPro Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK.
  25. Дудка А.П., Рабаданов М.Х., Лошманов А.А. // Кристаллография. 1989. Т. 34. Вып. 4. С. 818.
  26. Dudka A.// J. Appl. Cryst. 2010. V. 43. № 6. P. 1440. https://doi.org/10.1107/S0021889810037131
  27. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. В. 229. № 5. S. 345. https://doi.org/10.1515/zkri-2014-1737
  28. Максимов Б.А.,Молчанов В.Н., Милль Б.В. и др.// Кристаллография. 2005. Т. 50. № 5. С. 813.
  29. Дудка А.П. // Кристаллография. 2017. Т. 62. № 2. С. 202. https://doi.org/10.7868/S0023476117020102
  30. Iwataki T., Ohsato H., Tanaka K. et al. // J. Eur. Ceram. Soc. 2001. V. 21. P. 1409. https://doi.org/10.1016/S0955-2219(01)00029-2
  31. Дудка А.П., Милль Б.В. // Кристаллография. 2014. Т. 59. № 5. С. 759. https://doi.org/10.7868/S0023476114050038
  32. Vegard L. // Z. Phys. 1921. B. 5. S. 17. https://doi.org/10.1007/BF01349680
  33. Дудка А.П. // Кристаллография. 2017. Т. 62. № 3. С. 374. https://doi.org/10.7868/S0023476117030043
  34. Бацанов С.С. Структурная рефрактометрия. М.: Высшая школа, 1976. 304 с.
  35. Glazer A.M. // J. Appl. Cryst. 2002. V. 35. P. 652. https://doi.org/10.1107/S0021889802013997
  36. Shannon R.D., Shannon R.C., Medenbach O., Fischer R.X. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 4. P. 931. https://doi.org/10.1063/1.1497384

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Transmission spectra (a) and ingestion spectra (b) of LGS (1), LN0.4GS (2), LN0.6GS (3), NGS (4) tests

Baixar (252KB)
3. Fig. 2. Calculated (a) and experimental (b) LGS transmission spectra at different angles τ between the polarizer and the analyzer, sample thickness d = 1.76 mm

Baixar (184KB)
4. Fig. 3. Transmission spectra in polarized light of samples of LN0.4GS crystals with a thickness of d = 1.04 mm (a) and NGS with a thickness of d = 0.81 mm (b) at angles between polarizers 0º, 90º, –45º, 45º

Baixar (290KB)
5. Fig. 4. Calculation of the transparency range for crystals NGS (circles) and LN0.4GS (squares). The dispersion curve ρ for the LGS crystal

Baixar (71KB)
6. Fig. 5. Circular dichroism θi (dotted lines) in one or more absorption bands and calculated addition to the rotation of the polarization plane Δρi (solid lines)

Baixar (404KB)
7. Fig. 6. Circular dichroism spectra for LN0.4GS (a) and NGS (b) crystals

Baixar (115KB)
8. Fig. 7. The relationship of circular dichroism and rotation of the plane of polarization of light: the first column is the calculation of the addition of Δρ to the value of p associated with different bands of circular dichroism, using the example of an LN0.4GS crystal; the dispersion of p taking into account circular dichroism in comparison with the experimental dispersion of specific rotation (shown by dots): the second column is LN0.4GS, the third column is NGS

Baixar (750KB)
9. Fig. 8. Calculated values of the wavelength of polarization of light with the calculation of absorption in comparison with the corresponding value for LGS (appearance curve) for crystals: a – LN0.4GS, B-NGS

Baixar (200KB)
10. Fig. 9. Dependence of the lattice parameter a on the Nd content

Baixar (59KB)
11. Fig. 10. Configuration (in the form of ellipsoids of atomic displacements) of Ga(3f) atoms and O3(6g) atoms in neighboring cells forming a three-way spiral in an NGS crystal

Baixar (199KB)
12. Fig. 11. Dependences on the cell parameter a of the average refractive indices calculated by the method of molecular refraction (psr1, ●) and the WinOptAct program (psr2, ■) (a); calculated (σ) and experimental (♦) values of rotation of the plane of polarization of light (b)

Baixar (133KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024