Phaseformation in triple systems phosphates Sr–M2+Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The phase formation in a system of triple phosphates Sr–M2+Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+) has been investigated. The crystallization of strontiowhitlockite like structure and isomorphism in a series Sr9–xMnxTb(PO4)7, Sr9–xMgxEu(PO4)7 and Sr9–xZnxEu(PO4)7 (0 ≤ x ≤ 1.0) was described. The species were synthesized through solid-state reaction. It was shown that unlimited series of solid solutions can not be formed. The formation of a strontiowhitlockite-like structure was observed for only stoichiometric compositions Sr8MgEu(PO4)7 and Sr8ZnEu(PO4)7. Crystal chemical aspects of the formation of the strontiowhitlockite structure in the series were analysed. Samples with the strontiowhitlockite structure are crystallized in centrosymmetric space group (sp. gr. R3m) compared to a mother structure, mineral whitlockite, and its synthetic modifications based on calcium phosphate. The conditions for the formation of phosphates with the structure of stronciowhitlockite are indicated. The photoluminescence properties were described, and it was shown that samples exhibit intense emission in the red-orange region, due to the presence of Eu3+ ions. A quenching effect in Sr9–xMnxTb(PO4)7 was detected.

Texto integral

Acesso é fechado

Sobre autores

I. Nikiforov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: nikiforoviv@my.msu.ru
Rússia, Moscow

K. Yashina

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Rússia, Moscow

E. Zhukovskaya

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Rússia, Moscow

S. Gutnikov

Lomonosov Moscow State University

Email: nikiforoviv@my.msu.ru
Rússia, Moscow

S. Aksenov

Kola Science Centre, Russian Academy of Sciences

Email: nikiforoviv@my.msu.ru

Geological Institute; Laboratory of Arctic Mineralogy and Material Sciences

Rússia, Apatity

D. Deyneko

Lomonosov Moscow State University; Kola Science Centre, Russian Academy of Sciences

Email: nikiforoviv@my.msu.ru

Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences

Rússia, Moscow; Apatity

Bibliografia

  1. Zhang Z.-W., Wu Y.-N., Shen X.-H. et al. // Opt. Laser Technol. 2014. V. 62. P. 63. https://doi.org/10.1016/j.optlastec.2014.02.014
  2. Zhu D., Liao M., Mu Z., Wu F. // J. Electron. Mater. 2018. V. 47. № 8. P. 4840. https://doi.org/10.1007/s11664-018-6380-9
  3. Deyneko D.V., Aksenov S.M., Nikiforov I.V. et al. // Cryst. Growth Des. 2020. V. 20. № 10. P. 6461. https://doi.org/10.1021/acs.cgd.0c00637
  4. Никифоров И.В., Дейнеко Д.В., Спасский Д.А., Лазоряк Б.И. // Неорган. материалы. 2019. Т. 55. № 8. С. 859. https://doi.org/10.1134/s0002337x19070121
  5. Nord A.G. // Monatshefte. 1983. V. 11. P. 489.
  6. Judd B.R. // J. Chem. Phys. 1966. V. 44. № 2. P. 839. https://doi.org/10.1063/1.1726774
  7. Britvin S.N., Pakhomovskii Y.A., Bogdanova A.N., Skiba V.I. // Can. Mineral. 1991. V. 29. № 1. P. 87.
  8. Atencio D., Azzi A.d.A. // Mineralog. Mag. 2020. V. 84. № 6. P. 928. https://doi.org/10.1180/mgm.2020.86
  9. Szyszka K., Nowak N., Kowalski R.M. et al. // J. Mater. Chem. C. 2022. V. 10. № 23. P. 9092. https://doi.org/10.1039/D2TC00891B
  10. Chen J., Liang Y., Zhu Y. et al. // J. Lumin. 2019. V. 214. P. 116569. https://doi.org/10.1016/j.jlumin.2019.116569
  11. Jiang Y., Liu W., Cao X. et al. // J. Rare Earths. 2017. V. 35. № 2. P. 142. https://doi.org/10.1016/S1002-0721(17)60892-5
  12. Leng Z., Li L., Che X., Li G. // Mater. Des. 2017. V. 118. P. 245. https://doi.org/10.1016/j.matdes.2017.01.038
  13. Dai S., Zhang W., Zhou D. et al. // Ceram. Int. 2017. V. 43. № 17. P. 15493. https://doi.org/10.1016/j.ceramint.2017.08.097
  14. Cheng L., Zhang W., Li Y. et al. // Ceram. Int. 2017. V. 43. № 14. P. 11244. https://doi.org/10.1016/j.ceramint.2017.05.174
  15. Sarver J.F., Hoffman M.V., Hummel F.A. // J. Electrochem. Soc. 1961. V. 108. № 12. P. 1103. https://doi.org/10.1149/1.2427964
  16. Sun W., Li H., Li B. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 10. P. 9421. https://doi.org/10.1007/s10854-019-01272-6
  17. Huang C.H., Chiu Y.C., Yeh Y.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6661. https://doi.org/10.1021/am302014e
  18. Luo J., Zhou W., Fan J. et al. // J. Lumin. 2021. V. 239. P. 118369. https://doi.org/10.1016/j.jlumin.2021.118369
  19. Zhou J., Chen M., Ding J. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31940. https://doi.org/10.1016/j.ceramint.2021.08.080
  20. Tang W., Xue H. // RSC Adv. 2014. V. 4. № 107. P. 62230. https://doi.org/10.1039/C4RA10274F
  21. Zhou W., Fan J., Luo J. et al. // Mater. Today Chem. 2023. V. 27. P. 101263. https://doi.org/10.1016/j.mtchem.2022.101263
  22. Chi F., Dai W., Jiang B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 27. P. 15632. https://doi.org/10.1039/D0CP02544E
  23. Ding X., Wang Y. // Acta Mater. 2016. V. 120. P. 281. https://doi.org/10.1016/j.actamat.2016.08.070
  24. Ma X., Sun S., Ma J. // Mater. Res. Express. 2019. V. 6. № 11. P. 116207. https://doi.org/10.1088/2053-1591/ab47c6
  25. Yu Q., Wang L., Huang P. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. № 1. P. 196. https://doi.org/10.1007/s10854-018-0501-3
  26. Kim D., Seo Y.W., Park S.H. et al. // Mater. Res. Bull. 2020. V. 127. P. 110856. https://doi.org/10.1016/j.materresbull.2020.110856
  27. Belik A.A., Lazoryak B.I., Pokholok K.V. et al. // J. Solid State Chem. 2001. V. 162. № 1. P. 113. https://doi.org/10.1006/jssc.2001.9363
  28. Gallyamov E.M., Titkov V.V., Lebedev V.N. et al. // Materials. 2023. V. 16. № 12. P. 4392. https://doi.org/10.3390/ma16124392
  29. Mosafer H.S.R., Paszkowicz W., Minikayev R. et al. // Crystals. 2023. V. 13. № 5. P. 853. https://doi.org/10.3390/cryst13050853
  30. Xie G., Wu M., Li T. et al. // Phys. Status Solidi. B. 2022. V. 259. № 11. P. 2200259. https://doi.org/10.1002/pssb.202200259
  31. Helode S.J., Kadam A.R., Dhoble S.J. // J. Solid State Chem. 2023. V. 325. P. 124149. https://doi.org/10.1016/j.jssc.2023.124149
  32. Zhou J., Chen M., Zhang J. et al.// Chem. Eng. J. 2021. V. 426. P. 131869. https://doi.org/10.1016/j.cej.2021.131869
  33. Zhang C., Yao C. // Ceram. Int. 2021. V. 47. № 24. P. 34721. https://doi.org/10.1016/j.ceramint.2021.09.011
  34. Никифоров И.В., Дейнеко Д.В., Дускаев И.Ф. // ФТТ. 2020. Т. 62. Вып. 5. С. 766. https://doi.org/10.21883/FTT.2020.05.49243.19M
  35. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // CrystEngComm. 2019. V. 21. № 35. P. 5235. https://doi.org/10.1039/C9CE00931K
  36. Deyneko D.V., Morozov V.A., Vasin A.A. et al. // J. Lumin. 2020. V. 223. P. 117196. https://doi.org/10.1016/j.jlumin.2020.117196
  37. Nikiforov I.V., Spassky D.A., Krutyak N.R. et al. // Molecules. 2024. V. 29. № 1. P. 124. https://doi.org/10.3390/molecules29010124
  38. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // J. Alloys Compd. 2021. V. 887. P. 161340. https://doi.org/10.1016/j.jallcom.2021.161340
  39. Belik A.A., Izumi F., Ikeda T. et al. // Phosphorus, Sulfur, and Silicon and the Related Elements. 2002. V. 177. № 6–7. P. 1899. https://doi.org/10.1080/10426500212245
  40. Bessière A., Benhamou R.A., Wallez G. et al. // Acta Mater. 2012. V. 60. № 19. P. 6641. https://doi.org/10.1016/j.actamat.2012.08.034
  41. Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. http://dx.doi.org/10.1016/j.apsusc.2015.12.159
  42. Langell M.A., Hutchings C.W., Carson G.A., Nassir M.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 3. P. 1656. https://doi.org/10.1116/1.580314
  43. Soares E.A., Paniago R., de Carvalho V.E. et al. // Phys. Rev. B. 2006. V. 73. № 3. P. 035419. https://doi.org/10.1103/PhysRevB.73.035419
  44. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 39. https://doi.org/10.1116/1.1247889
  45. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 31. https://doi.org/10.1116/1.1247888
  46. Никифоров И.В., Титков В.В., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. № 8. С. 131548. https://doi.org/10.26902/jsc_id131548
  47. Dickens B., Schroeder L.W., Brown W.E. // J. Solid State Chem. 1974. V. 10. № 3. P. 232. https://doi.org/10.1016/0022-4596(74)90030-9
  48. Gopal R., Calvo C., Ito J., Sabine W.K. // Can. J. Chem. 1974. V. 52. № 7. P. 1155. https://doi.org/10.1139/v74-181
  49. Batool S., Liaqat U., Babar B., Hussain Z. // J. Korean Ceram. Soc. 2021. V. 58. № 5. P. 530. https://doi.org/10.1007/s43207-021-00120-w
  50. Deyneko D.V., Spassky D.A., Antropov A.V. et al. // Mater. Res. Bull. 2023. V. 165. P. 112296. https://doi.org/10.1016/j.materresbull.2023.112296
  51. Shannon R. // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/s0567739476001551
  52. Han Y.-j., Wang S., Liu H. et al. // J. Alloys Compd. 2020. V. 844. P. 156070. https://doi.org/10.1016/j.jallcom.2020.156070
  53. Lakshminarayana G., Buddhudu S. // Mater. Chem. Phys. 2007. V. 102. № 2. P. 181. https://doi.org/10.1016/j.matchemphys.2006.11.020

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of Sr9–xMgxEu(PO4)7 and bar diffraction patterns of the phases Sr9Fe1.5(PO4)7 (PDF-2 51-427) (1), Sr3Eu(PO4)3 (PDF-2 48-410) (2), Sr3(PO4)2 (PDF-2 80-1614) (3) (a); percentage content of the phases Sr9–xM2+xEu(PO4)7, M2+ = Mg2+ (b), Zn2+ (c).

Baixar (383KB)
3. Fig. 2. Diffraction patterns of Sr9–xMnxTb(PO4)7 and bar diffraction patterns of the Sr9Fe1.5(PO4)7 (PDF-2 51-427) (1) and Sr3(PO4)2 (PDF-2 80-1614) (2) phases (reflexes of the Tb7O12 (PDF-2 34-518) phase are indicated by an asterisk) (a); percentage content of the Sr9–xMnxTb(PO4)7 phases (b).

Baixar (329KB)
4. Fig. 3. XPS spectra of Mn2p (a) and Mn3s (b) of Sr9–xMnxTb(PO4)7 at x = 0.2 (1), 1.0 (2).

Baixar (223KB)
5. Fig. 4. Roseboom concentration triangle for the Sr3(PO4)2–Mg3(PO4)2–EuPO4 (a) and Sr3(PO4)2–Mn3(PO4)2–TbPO4 (b) systems: e – eulytine phase Sr3Eu(PO4)3 (Sr3Tb(PO4)3); s – SrMg2(PO4)2 (SrMn2(PO4)2); m – Mg3(PO4)2:0.5Eu3+; w1 – (Sr0.86Mg0.14)3(PO4)2, w2 – (Sr0.95Mg0.04)3(PO4)2, w3 – Sr9Mn1.5(PO4)7 [39]; the compositions obtained in the present work are marked with an asterisk (the asterisk in a circle is a single-phase composition).

Baixar (267KB)
6. Fig. 5. Structure of palmierite Sr3(PO4)2 (a) and comparison of octahedral positions of Sr1O6+6 in palmierite (b) and M5O6 in strontiovitlockite (c) with indication of average distances between the central atom and oxygen.

Baixar (160KB)
7. Fig. 6. Excitation (λemitted = 615 nm) (a) and emission (λexcited = 395 nm) (b) spectra of PL of Sr8MgEu(PO4)7 (1) and Sr8ZnEu(PO4)7 (2).

Baixar (170KB)
8. Fig. 7. Excitation (λemitted = 547 nm) (a) and emission (λexcited = 375 nm) (b) spectra of PL Sr9–xMnxTb(PO4)7.

Baixar (264KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025