A Method for Detecting Nanometer Length Oscillations in Fiber-Optic Sensors Using a Tracking Tandem Low-Coherent Interferometer
- Autores: Volkov P.V.1, Goryunov A.V.1, Luk’yanov A.Y.1, Semikov D.A.1, Tertyshnik A.D.1
- 
							Afiliações: 
							- Institute of Physics of Microstructures, Russian Academy of Sciences
 
- Edição: Nº 6 (2023)
- Páginas: 69-73
- Seção: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670320
- DOI: https://doi.org/10.31857/S0032816223040067
- EDN: https://elibrary.ru/SUMVEN
- ID: 670320
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A method for detecting changes in the length of an optical cavity is proposed for fiber-optic sensors based on the Fabry–Perot interferometer scheme. The possibility of detecting oscillations of the resonator length at the subnanometer level in the frequency band 1.5–300 kHz is shown. The sensitivity was 0.3 nm in standard deviation. The proposed scheme makes it possible to reliably distinguish high-frequency oscillations against the background of slow drifts of the sensor length caused by temperature fluctuations or deformations.
Sobre autores
P. Volkov
Institute of Physics of Microstructures, Russian Academy of Sciences
														Email: volkov@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
A. Goryunov
Institute of Physics of Microstructures, Russian Academy of Sciences
														Email: volkov@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
A. Luk’yanov
Institute of Physics of Microstructures, Russian Academy of Sciences
														Email: volkov@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
D. Semikov
Institute of Physics of Microstructures, Russian Academy of Sciences
														Email: volkov@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
A. Tertyshnik
Institute of Physics of Microstructures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: volkov@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
Bibliografia
- Zhang Z., Liao C., Tang J., Bai Z., Guo K., Hou M., He J., Wang Y., Liu S., Zhang F., Wang Y. // J. Light. Technol. 2017. V. 35. № 18. P. 4067. https://doi.org/10.1109/JLT.2017.2710210
- Ma J., Jin W., Xuan H., Wang C., Ho H.L. // Opt. Lett. 2014. V. 39. № 16. P. 4769. https://doi.org/10.1364/OL.39.004769
- Liu Q., Jing Z., Liu Y., Li A., Xia Z., Peng W. // Opt. Express. 2019. V. 27. № 26. P. 38191. https://doi.org/10.1364/OE.381197
- Yu H., Luo Z., Zheng Y., Ma J., Li Z., Jiang X. // J. Light. Technol. 2019. V. 37. № 10. P. 2261. https://doi.org/10.1109/JLT.2019.2901845
- Tosi D. // J. Light. Technol. 2016. V. 34. № 15. P. 3622. https://doi.org/10.1109/JLT.2016.2575041
- Yang Y., Wang Y., and Chen K. // Opt. Express. 2021. V. 29. № 5. P. 6768. https://doi.org/10.1364/OE.415750
- Digonnet M.J.F., Akkaya O.C., Kino G.S., Solgaard O. // Imaging Applied Optics Technical Digest. 2012. Stu3F. 1. https://doi.org/10.1364/SENSORS.2012.Stu3F.1
- Zhou C., Letcher S.V., Shukla A. // The J. Acoust. Soc. Am. 1995. V. 98. № 2. P. 1042. https://doi.org/10.1121/1.413669
- Akkaya O.C., Akkaya O., Digonnet M.J.F., Kino G.S., Solgaard O. // J. Microelectromechanical Syst. 2012. V. 21. № 6. P. 1347. https://doi.org/10.1109/JMEMS.2012.2196494
- Kilic O., Digonnet M., Kino G., Solgaard O. // Meas. Sci. Technol. 2007. V. 18. № 10. P. 3049. https://doi.org/10.1088/0957-0233/18/10/S01
- Dandridge A., Tveten A., Giallorenzi T. // IEEE J. Quantum Electron. 1982. V. 18. № 10. P. 1647.
- Wang L., Zhang M., Mao X., Liao Y. // Interferometry XIII: Techniques and Analysis. 2006. V. 62921E. https://doi.org/10.1117/12.678455
- Chen K., Yu Z., Gong Z., Yu Q. // Opt. Lett. 2018. V. 43. № 20. P. 5038. https://doi.org/10.1364/OL.43.005038
- Volkov P., Semikov D., Goryunov A., Luk’yanov A., Tertyshnik A., Vopilkin E., Krayev S. // Sensors Actuators A: Phys. 2020. V. 316. P. 112385. https://doi.org/10.1016/j.sna.2020.112385
- Volkov P., Goryunov A., Luk’yanov A., Tertyshnik A., Baidakova N., Luk’yanov I. // Optik. 2013. V. 124. № 15. P. 1982. https://doi.org/10.1016/j.ijleo.2012.06.043
- Volkov P., Lukyanov A., Goryunov A., Semikov D., Vopilkin E., Kraev S., Okhapkin A., Tertyshnik A., Arkhipova E. // Sensors. 2021. V. 21. № 21. P. 7343. https://doi.org/10.3390/s21217343
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




