About Filtration in a Geophysical Bridge with a Seepage Site
- Авторлар: Anakhaev K.N.1
-
Мекемелер:
- Institute of Applied Mathematics and Automation of the Kabardino-Balkar Scientific Center of the Russian Academy of Sciences
- Шығарылым: Том 88, № 3 (2024)
- Беттер: 434-446
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675055
- DOI: https://doi.org/10.31857/S0032823524030075
- EDN: https://elibrary.ru/ZAUDSA
- ID: 675055
Дәйексөз келтіру
Аннотация
Based on the representation of a modular elliptic function in the form of a combination of simple algebraic formulas that conformally map the area of the velocity hodograph (curved triangle) onto a half-plane, a direct definition of filtration rates in a geophysical bridge is given. For the first time, a family of isotope lines of equal filtration rates was constructed for the inner area of the bridge in the absence of water in the downstream. For special cases, the values of the proposed formulas almost completely coincide with the hydromechanical solution of Masket M. (for 4 cases) and the numerical calculations of Khairullin Z.E. (for 2 cases). The well-known Nelson-Skornyakov F.B. formula for the output filtration rates through the lower face of the jumper, adopted by analogy with the flow outlet from the base of the flatbed into the horizontal drainage, gives an underestimation of the results by up to 45%, and therefore cannot be recommended for practical use.
Негізгі сөздер
Толық мәтін

Авторлар туралы
K. Anakhaev
Institute of Applied Mathematics and Automation of the Kabardino-Balkar Scientific Center of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: anaha13@mail.ru
Ресей, Nalchik
Әдебиет тізімі
- Dupuit J. Etudes theoriques et pratiquessur le movement des eaux. No 49. Paris: 1863.
- Forchheimer Ph. Hydraulik. Leipzig u. Berlin: Auflage, 1930. 525 s.
- Knorre M.E. The work of sand bridges in physical terms and the method of their calculation // in: Methodology of Hydraulic Calculations Adopted When Drafting the Zaporozhye Hydroelectric Power Station on the Dnieper River. Vol. 1. Moscow: 1925. pp. 285–327.
- Pavlovsky N.N. Coll. Works. Vol. 2. Movement of Groundwater. Moscow, Leningrad: USSR AS Pub., 1956. 771 p.
- Devison B.B. On the steady movement of groundwater through earthen dams // Notes of the State Hydrol. Inst., vol. 6, 1932, pp. 11–19.
- Dachler R. Ueber den Stromungsvorgang bei Hangquellen // Die Wasserwirtschaft, 1934, Jg. 27, h. 5–6, ss. 41–43.
- Hamel G. Ueber Grundwasserstromung // Zeischrift fur Angewandte Mathematik und Mechanik, 1934, B. 14, h. 3, ss. 129–159.
- Hamel G., Gunter E. Numerische Duchredinung der Abhandlung uber Grundwasserstromung // Zeischrift fur Angewandte Mathematik und Mechanik, 1935, B. 15, h. 3, ss. 255–265.
- Muskat M. The seepage of water through dams with vertical faces // Physics, 1935, vol. 6, pp. 402–415.
- Muskat M. The Flow Homogeneous Fluid through Porous Media. N.Y.; London: McGraw Hill Co., 1937. 763 p.
- Wyckoff R.D., Reed D.W. Electrical conduction models for the solition of water seepage problems // Physics, 1935, vol. 6, pp. 395–401.
- Anakhaev K.N. Methods of filtration calculation of stone-earth dams. Dis. Candidate of Technical Sciences (05.23.07) / Moscow: VNII VODGEO, 1985. 203 p.
- Proskurnikov S.M. New calculated data on filtration through earth bridges // Proc. of the State Hydrol. Inst., 1937, vol. 5, pp. 162–182.
- Khristianovich S.A., Mikhlin S.G., Devison B.B. Some New Questions of Continuum Mechanics. Moscow: USSR AS Pub., 1938. 407 p.
- Polubarinova-Kochina P.Ya. Some Problems of the Flat Movement of Groundwater. Moscow: Inst. of Mech. of the USSR AS, 1942. 143 p.
- Polubarinova-Kochina P.Ya. Theory of Groundwater Movement. Moscow: Nauka, 1977. 664 p.
- Charny I.A. Rigorous proof of Dupuy formulas for non-pressure filtration with a seepage interval // Dokl. of the USSR AS, 1951, vol. 79, no. 6. pp. 937–940.
- Anakhaev K.N. On the filtration calculation of the jumper // Math. Model., 2011, vol. 23, no. 2, pp. 148–158.
- Anakhaev K.N. Definition of a modular elliptic function in pressure-free filtration problems // Dokl. of the RAS, 2016, vol. 470, no. 2, pp. 157–161. https://doi.org/10.7868/S0869565216220084
- Anakhaev K.N. Problems of hydromechanics and nonlinear mechanics in complex and special functions // in: Coll. of Selected Articles. IPMA KBNTS RAS, IVP RAS. Nalchik; Moscow: 2020. 245 p.
- Khairullin Z.E. Investigation of the influence of the heterogeneity of the core of a stone-earth dam on filtration characteristics // Proc. of the Sem. on Boundary Value Problems, Vol. 19. Kazan: Kazan Univ. Pub., 1983, pp. 202–210.
- Nelson-Skornyakov F.B. Calculation of Groundwater Movement through Earthen Dams. Moscow: 1936. 159 p.
- Anakhaev K.N. Calculation of filtration through a soil bridge on an impermeable base // Izv. vuzov. Construct.&Archit., 1990, no. 7, pp. 78–82.
- Anakhaev K.N. Improvement of the design, methods of calculation justification and design of anti-filtration devices of soil dams. Dis. doctor of Technical Sciences (05.23.07) / Moscow: MGUP, 1997. 521 p.
- Nemenyi P. Wasserbauliche Stromungslehre. Leipzig: 1933.
- Cryer C.W. A survey of steady-state porous flow free boundary problems. // MRC Tech. Sum. Rep., 1657, Univ. Wisconsin, Madison, 1976, 135 p.
- Chaiyo Kh., Rattanadecho Ph., Chantasiriwan S. The method of fundamental solutions for solving free boundary saturated seepage problem // Int. Commun. in Heat&Mass Transfer, 2011, no. 38, pp. 249–254.
- Shalanin V.A., Patlay K.I. Numerical modeling of groundwater filtration through a rectangular bridge made of homogeneous soil on a waterproof base // Engng. Hydrology, 2019, no. 2 (39), pp. 111–117.
- Petrichenko M.R., Zaborova D.D., Kotov E.V., Musorina T.A. Formation of a seepage gap in a rectangular bridge // Hydrotech. Constr., 2018, no. 10, pp. 49–52.
- Raspopin G.A., Leshchenko S.I. Filtration through soil dams with a core // Izv. vuzov. Construct., 2006, no. 8, pp. 47–51.
- Mohamed Abd El-Razek M. Rezk, Abd El-Aziz Ahmed Ali Senoon. Analytical solution of seepage through earth dam with an internal core // Alexandria Engng. J., 2011, no. 50, pp. 111–115.
Қосымша файлдар
