On the Contact Angles of a Small Sessile Drop and a Captive Bubble in View of the Size Dependence of Surface Tension
- Autores: Sokurov A.A.1
- 
							Afiliações: 
							- Institute of Applied Mathematics and Automation – the filial branch of Federal Scientific Center “Kabardin-Balkar Scientific Center of the RAS
 
- Edição: Volume 87, Nº 5 (2023)
- Páginas: 862-868
- Seção: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675102
- DOI: https://doi.org/10.31857/S0032823523050144
- EDN: https://elibrary.ru/QPFIEO
- ID: 675102
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New mathematical models of a sessile drop and a captive bubble are constructed taking into account the size dependence of surface tension. If the Tolman length tends to zero the well-known Bashforth–Adams model can be considered as a special case of the constructed models. Numerical calculations of the contact angles are carried out for various numeric values of the equilibrium volume. The study shows that the size dependence of the surface tension leads to a violation of the consistency condition between the contact angles of a drop and a bubble in an external force field.
Palavras-chave
Sobre autores
A. Sokurov
Institute of Applied Mathematics and Automation – the filial branch of Federal Scientific Center“Kabardin-Balkar Scientific Center of the RAS
							Autor responsável pela correspondência
							Email: asokuroff@gmail.com
				                					                																			                												                								Russia, Nalchik						
Bibliografia
- Rusanov A.I., Prokhorov V. Interfacial Tensiometry. St. Petersburg: Khimija; 1994. 400 p. (in Russian)
- Tatyanenko D.V., Shchekin A.K. Thermodynamic analysis of adsorption and line-tension contributions to contact angles of small sessile droplets // Colloid J., 2019, vol. 81, no. 4, pp. 517–531.
- Rusanov A.I. Thermodynamics of the contact angle of a sessile bubble // Colloid J., 2020, vol. 82, no. 3, pp. 303–310. 4. Zhang H., Zhang X. Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets // Nanoscale, 2019, vol. 11, no. 6, pp. 2823–2828. 5. Rusanov A.I., Tatyanenko D.V., Shchekin A.K. Comment on “Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets” by H. Zhang and X. Zhang, Nanoscale, 2019, 11, 2823 // Nanoscale, 2021, vol. 13, no. 7, pp. 4308–4310. 6. Rekhviashvili S.Sh. Some questions concerning a small sessile bubble // Colloid J., 2021, vol. 83, no. 6, pp. 816–818. 7. Rekhviashvili S.Sh. Size Dependence of the surface tension of a small droplet under the assumption of a constant tolman length: critical analysis // Colloid J., 2020, vol. 82, no. 3, pp. 342–345. 8. Rekhviashvili S.Sh., Sokurov A.A. Modeling of a sessile droplet with the curvature dependence of surface tension // Turk. J. Phys., 2018, vol. 42, no. 6, pp. 699–705. 9. Rusanov A.I. Phase Equilibria and Surface Phenomena. Leningrad: KHimija, 1967. 388 p. (in Russian) 10. Wen J., Dini D., Hu H., Smith E.R. Molecular droplets vs bubbles: Effect of curvature on surface tension and Tolman length // Phys. Fluids, 2021, vol. 33, no. 6, pp. 072012. 11. Finn R. Equlibrium Capillary Surfaces. N.Y.: Springer, 1986. 245 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


