Tritium labeling vancomycin and studying its adsorption on nanodiamonds
- Autores: Shen T.1, Chernysheva M.G.1, Badun G.A.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Volume 65, Nº 6 (2023)
- Páginas: 575-583
- Seção: Articles
- URL: https://cardiosomatics.ru/0033-8311/article/view/661189
- DOI: https://doi.org/10.31857/S0033831123060102
- EDN: https://elibrary.ru/NVXSVC
- ID: 661189
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Procedure of tritium labeling vancomycin using tritium thermal activation method has been developed. The influence of target mass on the specific and total radioactivity was revealed. [3H]vancomycin was used for studying its equilibrium adsorption on nanodiamonds as well as its number that tightly bonded with surface and didn’t remove with water. It was found that adsorption from aqueous solution results in tightly bonded vancomycin with nanodiamonds that didn’t removed with water. Application of 0.028 M phosphate buffer (pH 6.7 and 2.7) leads to the equilibrium adsorption growth as much as one and a half times, while vancomycin number in the adsorption complex with nanodiamonds after washing with water was significantly reduced. Such behavior of vancomycin is due to the presence of phosphate-ions that contribute to vancomycin adsorption, but are removed during washing with water. Molecular mechanics simulation allows us to suggest the formation of multiple hydrogen bonds for formation of a durable adsorption complex of vancomycin with nanodiamonds.
			                Palavras-chave
Sobre autores
T. Shen
Lomonosov Moscow State University
M. Chernysheva
Lomonosov Moscow State University
														Email: chernyshevamg@my.msu.ru
				                					                																			                												                														
G. Badun
Lomonosov Moscow State University
Bibliografia
- van der Laan K., Hasani M., Zheng T., Schirhagl R. // Small. 2018. Vol. 14. Article 1703838.
- El-Say K.M., Mohamed E.-S.K., El-Say K.M. // J. Appl. Pharm. Sci. 2011. Vol. 1. P. 29-39.
- Долматов В.Ю. // Успехи химии. 2001. T. 70. C. 687-708.
- Долматов В.Ю., Озерин А.Н., Кулакова И.И., Бочечка А.А., Лапчук Н.М., Мюллюмаки В., Веханен А. // Успехи химии. 2020. T. 89. C. 1428-1462.
- Vaijayanthimala V., Lee D.K., Kim S.V., Yen A., Tsai N., Ho D., Chang H.-C.C., Shenderova O. // Expert Opin. Drug Deliv. 2015. Vol. 12. P. 735-749.
- Guan B., Zou F., Zhi J. // Small. 2010. Vol. 6. P. 1514-1519.
- Zhang X.-Q., Lam R., Xu X., Chow E.K., Kim H.-J., Ho D. // Adv. Mater. 2011. Vol. 23. P. 4770-4775.
- Chauhan S., Jain N., Nagaich U. // J. Pharm. Anal. 2020. Vol. 10. P. 1-12.
- Mengesha A.E., Youan B.-B.C. Nanodiamonds for drug delivery systems // Diamond-Based Materials for Biomedical Applications. Elsevier, 2013. P. 186-205.
- Osawa E., Ho D. // J. Med. Allied Sci. 2012. Vol. 2. P. 31-40.
- Бадун Г.А., Мясников И.Ю., Казаков А.Г., Федорова Н.В., Чернышева М.Г. // Радиохимия. 2019. T. 61. C. 168-73.
- Chernysheva M.G., Myasnikov I.Y., Badun G.A. // Diam. Relat. Mater. 2015. Vol. 55. P. 45-51.
- Chernysheva M.G., Myasnikov I.Y., Badun G.A. // Mendeleev Commun. 2012. Vol. 22. P. 290-291.
- Чернышева М.Г., Бадун Г.А., Синолиц А.В., Егоров А.В., Егорова Т.Б., Попов А.Г., Ксенофонтов А.Л. // Радиохимия. 2021. T. 63. C. 185-192.
- Li X., Shao J., Qin Y., Shao C., Zheng T., Ye L. // J. Mater. Chem. 2011. Vol. 21. P. 7966-7973.
- Salaam A.D., Hwang P.T.J, Poonawalla A., Green H.N., Jun H.W., Dean D. // Nanotechnology. 2014. Vol. 25. Article 425103.
- Xi G., Robinson E., Mania-Farnell B., Vanin E.F., Shim K.W., Takao T., Allender E.V., Mayanil C.S., Soares M.B., Ho D., Tomita T. // Biol. Med. 2014. Vol. 10. P. 381-391.
- Mochalin V.N., Pentecost A., Li X.-M., Neitzel I., Nelson M., Wei C., He T., Guo F., Gogotsi Y. // Platform Mol. Pharm. 2013. Vol. 10. P. 3728-3735.
- Chernysheva M.G., Chaschin I.S., Sinolits A.V., Vasil'ev V.G., Popov A.G., Badun G.A., Bakuleva N.P. // Fullerenes, Nanotub. Carbon Nanostruct. 2020. Vol. 28. P. 256-261.
- Chernysheva M.G., Chaschin I.S., Badun G.A., Vasil'ev V.G., Mikheev I.V., Shen T., Sinolits M.A., Bakuleva N.P. // Colloids Surf. A: Physicochem. Eng. Asp. 2023. Vol. 656. Article 130373.
- Chernysheva M.G., Melik-Nubarov N.S., Grozdova I.D., Myasnikov I.Y., Tashlitsky V.N., Badun G.A. // Mendeleev Commun. 2017. Vol. 27. P. 421-423.
- Shen T., Chernysheva M.G., Badun G.A., Popov A.G., Egorov A.V., Anuchina N.M., Chaschin I.S., Bakuleva N.P. // Colloids Interfaces. 2022. Vol. 6. P. 35-48.
- Badun G.A., Chernysheva M.G., Gus'kov A.V., Sinolits A.V., Popov A.G., Egorov A.V., Egorova T.B., Kulakova I.I., Lisichkin G.V. // Fullerenes, Nanotub. Carbon Nanostruct. 2020. Vol. 28. P. 361-367.
- Jia Z., O'Mara M.L., Zuegg J., Cooper M.A., Mark A.E. // FEBS J. 2013. Vol. 280. P. 1294-1307.
- Cong Y., Yang S., Rao X. // J. Adv. Res. 2020. Vol. 21. P. 169-176.
- Бадун Г.А., Лукашина Е.В. Ксенофонтов А.Л., Федосеев В.М. // Радиохимия. 2001. T. 43. C. 272-276.
- Бадун Г.А., Ксенофонтов А.Л., Лукашина Е.В., Позднякова В.Ю., Федосеев В.М. // Радиохимия. 2005. T. 47. C. 281-283.
- Сидоров Г.В., Бадун Г.А., Баитова Е.А., Баитов А.А., Платошина А.М., Мясоедов Н.Ф., Федосеев В.М. // Радиохимия. 2005. T. 47. C. 284-288.
- Чернышева М.Г., Бадун Г.А., Тясто З.А., Позднякова В.Ю., Федосеев В.М., Ксенофонтов А.Л. // Радиохимия. 2007. T. 49. C. 166-169.
- Бадун Г.А., Чернышева М.Г. // Радиохимия. 2023. T. 65. C. 158-171.
- Бадун Г.А., Федосеев В.М. // Радиохимия. 2001. T. 43. C. 267-271.
- Schober G.B., Anker J.N. // Adv. Funct. Mater. 2022. Vol. 32. Article 2106508.
- Carmona P., Rodriguez M.L. // J. Mol. Struct. 1986. Vol. 143. P. 365-368.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
