Thermal Stability of Irradiated VP–1AP Anion Exchange Resin
- Autores: Kalistratova V.V.1, Belova E.V.1, Milyutin V.V.1, Nazin E.R.1
- 
							Afiliações: 
							- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
 
- Edição: Volume 66, Nº 3 (2024)
- Páginas: 246-252
- Seção: Articles
- URL: https://cardiosomatics.ru/0033-8311/article/view/681636
- DOI: https://doi.org/10.31857/S0033831124030053
- ID: 681636
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The effect of irradiation of a strongly basic vinylpyridine anion exchange resin of the VP–1AP grade in nitrate form on the onset temperatures of exothermic reactions, thermal effects and the composition of gaseous thermolysis products of VP–1AP was studied. It was established that the onset temperatures of exothermic reactions for an irradiated anion exchange resin are reduced by 59–100°C. The total thermal effect of thermolysis of the irradiated sorbent is 67% less than that of the non-irradiated one. An analysis of the composition of the gaseous thermolysis products of the VP–1AP irradiated anion exchange resin showed that at the first stage of thermolysis, the functional groups of the sorbent are predominantly decomposed. At higher temperatures, the process of degradation of the styrene-divinylbenzene anion exchange resin matrix was detected. The significant influence of irradiation on the conditions for the safe use of anion exchange resins during separation of radionuclides from nitric acid solutions was demonstrated.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Kalistratova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: vmilyutin@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
E. Belova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: vmilyutin@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
V. Milyutin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: vmilyutin@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
E. Nazin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: vmilyutin@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
Bibliografia
- Лызлова Е.В., Глухова А.В., Кондруцкий Д.А. // Радиохимия. 2019. Т. 61. № 2. С. 122–126.
- Лызлова Е.В., Глухова А.В., Старовойтов Н.П., Логунов М.В., Гелис В.М. // Вопр. радиац. безопасности. 2013. № 2. С. 57–63.
- Peterson R.A., Brown G., Rovira A.M. Ion Exchange. Engineering Separations Unit Operations for Nuclear Processing. CRC, 2019. P. 251–303.
- Du M., Hylton T.D., Robinson S.M. // J. Radioanal. Nucl. Chem. 2021. Vol. 327. P. 417–424.
- Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009.
- Nazin E., Belova E. // Prog. Nucl. Energy. 2022. Vol. 149. Article 104254.
- Глаголенко Ю.В. Анализ причин разгерметизации сорбционной колонны на установке по производству плутония–238 радиоизотопного завода ПО «Маяк» Радиевый ин-т им. В.Г. Хлопина, ЦНИИатоминформ, 1996.
- Стрелков С.А. Роль радиационно-химических эффектов в сорбционных процессах на анионите ВП–1Ап: автореф. дис. … к.х.н. СПб.: Радиевый ин-т, 2006. 23 с.
- Milyutin V.V., Nekrasova N.A., Tret’yakov V.A., Kondrutskii D.A. // Radiochemistry. 2016. Vol. 58. P. 640–644.
- Orhan T., Hacaloglu J. // Polym. Degrad. Stab. 2013. Vol. 98. No. 1. P. 356–360.
- Лызлова Е.В., Глухова А.В., Конников А.В., Бирюкова М.А. // Радиохимия. 2020. Т. 62. № 3. С. 234–239.
- Sato Y., Matsunaga T., Koyama S.I., Suzuki T., Ozawa M. // Energy Procedia. 2015. Vol. 71. P. 112–122.
- Sato Y., Okada K., Akiyoshi M., Matsunaga T., Koyama S.I., Suzuki T., Ozawa M. // Prog. Nucl. Energy. 2011. Vol. 53. № 7. P. 988–993.
- Baidak A., LaVerne J.A. // J. Nucl. Mater. 2010. Vol. 407. № 3. P. 211–219.
- Ramesh Kumar C., Vijayakumar V., Suresh A., Jayalakshmi S., Sivaraman N. // J. Radioanal. Nucl. Chem. 2019. Vol. 321. P. 617–627.
- Wang J., Wan Z. // Prog. Nucl. Energy. 2015. Vol. 78. P. 47–55.
- Luca V., Bianchi H.L., Manzini A.C. // J. Nucl. Mater. 2012. Vol. 424. No. 1–3. P. 1–11.
- Ионообменные материалы для процессов гидрометаллургии, очистки сточных вод и водоподготовки: Справ. М.: ВНИИХТ, 1983. 207 с.
- Калистратова В.В., Родин А.В., Емельянов А.С., Виданов В.Л., Милютин В.В., Белова Е.В., Шмидт О.В., Мясоедов Б.Ф. // Радиохимия. 2018. Т. 60. № 3. С. 250–255.
- Горст А.Г. Пороха и взрывчатые вещества. М.: Машиностроение, 1972. 207 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




