Noise figure analysis of receiver based on current-driven mixer
- Authors: Korotkov A.S.1, Tran T.D.1
- 
							Affiliations: 
							- Peter the Great St. Petersburg Polytechnic University
 
- Issue: Vol 69, No 11 (2024)
- Pages: 1110-1120
- Section: Articles
- URL: https://cardiosomatics.ru/0033-8494/article/view/684291
- DOI: https://doi.org/10.31857/S0033849424110092
- EDN: https://elibrary.ru/HOCDDO
- ID: 684291
Cite item
Abstract
An analysis of the noise characteristics of the receiver based on a current-driven passive mixer is presented, taking into account the noise of the following blocks: the low-noise amplifier at input of the mixer, the mixer itself, and the transimpedance amplifier at output of the mixer. The noise at the output of the receiver, which is generated by the listed groups of noise sources, is analyzed. The noise figure of the receiver and its optimal (minimum) value are found taking into account the influence of parasitic capacitances of the switches of the mixer. The calculation results are confirmed by the simulation results.
About the authors
A. S. Korotkov
Peter the Great St. Petersburg Polytechnic University
							Author for correspondence.
							Email: korotkov@spbstu.ru
				                					                																			                												                	Russian Federation, 							Polytechnicheskaya St. 29, Str. Petersburg, 195251						
T. D. Tran
Peter the Great St. Petersburg Polytechnic University
														Email: korotkov@spbstu.ru
				                					                																			                												                	Russian Federation, 							Polytechnicheskaya St. 29, Str. Petersburg, 195251						
References
- Terrovitis M. A., Mayer R. G. // IEEE J. Solid-State Circuits. 1999. V. 34. № 6. P. 772.
- Darabi H., Abidi A. A. // IEEE Trans. 2000. V. SSC-35. № 1. P. 15.
- Kоротков А. С. // Микроэлектроника. 2011. Т. 40. № 2. С. 128.
- Qi G., Shao H., Mak P. I. // IEEE J. Solid-State Circuits. 2020. V. 55. № 12. P. 3387.
- Yang D., Andrew C., Molnar A. // IEEE Trans. 2015. V. CS-I-62. № 11. P. 2759.
- Lenka M. K., Banerjee G. // IEEE Trans. 2019. V. VLSI-27. № 5. P. 993.
- Shams N., Nabki F. // IEEE Trans. 2023. V. VLSI-31. № 3. P. 369.
- Chehrazi S., Mirzaei A., Abidi A. A. // IEEE Trans. 2010. V. CS-I-57. № 2. P. 332.
- Чан Т. Д., Коротков А. С. // РЭ. ٢٠٢٤. Т. 69. № 3. С. 288.
- Коротков А. С., Чан Т. Д. // РЭ. ٢٠٢٣. Т. 68. № 1. С. 83.
- Mirzaei A., Darabi D., Leete J. C. et al. // IEEE J. Solid-State Circuits. 2009. V. 44. № 10. P. 2678.
- Korotkov A. S., Tran T. D. // Proc. 2023 Int. Conf. Electrical Engineering and Photonics. St. Petersburg. 19–20 Oct. N.Y.: IEEE, 2023. P. 22.
- Nguyen T. K., Kim C. H., Ihm G. J. et al. // IEEE Trans. 2004. V. MTT-52. № 5. P. 1433.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					