Frequency Converters for the Terahertz and Infrared Ranges
- Autores: Lerer A.M.1, Makeev G.S.2, Cherepanov V.V.1
- 
							Afiliações: 
							- Southern Federal University
- Penza State University
 
- Edição: Volume 68, Nº 1 (2023)
- Páginas: 30-36
- Seção: ELECTRODYNAMICS AND RADIO WAVE PROPAGATION
- URL: https://cardiosomatics.ru/0033-8494/article/view/650616
- DOI: https://doi.org/10.31857/S0033849423010084
- EDN: https://elibrary.ru/CDKSIC
- ID: 650616
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A method for solving the problem of nonlinear diffraction on two-dimensional periodic gratings of graphene ribbons has been developed. The third-order nonlinear conductivity of graphene under the action of two waves is taken into account, which is determined by the field of the pump wave, for which we use the field on graphene ribbons obtained by solving the linear diffraction problem. Numerical analysis shows the efficiency of nonlinear frequency conversion in the terahertz and infrared ranges when the frequencies of the incident pump and signal waves coincide with the resonant frequencies of the fundamental and higher order modes of surface plasmon polaritons in graphene ribbons.
Palavras-chave
Sobre autores
A. Lerer
Southern Federal University
														Email: lerer@sfedu.ru
				                					                																			                												                								Taganrog, 344090 Russia						
G. Makeev
Penza State University
														Email: lerer@sfedu.ru
				                					                																			                												                								Penza, 440026 Russia						
V. Cherepanov
Southern Federal University
							Autor responsável pela correspondência
							Email: lerer@sfedu.ru
				                					                																			                												                								Taganrog, 344090 Russia						
Bibliografia
- Nagatsuma T., Horiguchi Sh., Minamikata Y. et al. // Opt. Express. 2013. V. 21. № 20. P. 23736.
- HouY., Jiang C. // Current Chinese Physics. 2021. V. 1. № 3. P. 299. https://doi.org/10.2174/221029810166621020416263
- Hu X., Zeng M., Wang A., Zhu L. et al. // Opt. Express. 2015 V. 23. № 20. P. 26158.
- Deng H., Huang., He Y., Ye F. // Chinese Physics. B. 2021. V. 30. № 4. P. 044213.
- Ooi K. J.A., Cheng J.L., Sipe J.E. et al. // APL Photonics. 2016. V. 1. № 4. P. 046101. https://doi.org/10.1063/1.4948417
- Cox J.D., Garcia de Abajo F.J. // ACS Photonics. 2015. V. 2. № 3. P. 306.
- Cao J., Kong Y., Gao S., Liu C. // Optics Commun. 2018. V. 406. P. 183.
- Лepep A.M. // PЭ. 2012. T. 57. № 11. C. 1160. https://doi.org/10.1134/S106422691210004X
- Лерер А.М., Иванова И.Н. // РЭ. 2016. Т. 61. № 5. С. 435. https://doi.org/10.1134/S1064226916050089
- Лерер А.М., Макеева Г.С., Черепанов В.В. // РЭ. 2021. Т. 66. № 6. С. 543. https://doi.org/10.31857/S0033849421060188
- Hanson G.W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
- Cheng J.L., Vermeulen N., Sipe J. // Phys. Rev. B. 2015. V. 91. № 23. P. 235320.
- Mikhailov S.A. // Phys. Rev. B. 2016. V. 93. № 8. P. 085403.
- Лерер А.М., Иванова И.Н., Макеева Г.С., Черепанов В.В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
- Cox J.D., Garcia de Abajo F.J. // Accounts Chemical Research. 2019. V. 52. № 9. P. 2536.
- Lerer A.M., Makeeva G.S., Cherepanov V.V. // Mater. 2020 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE). Saratov. 24–25 Sept. N.Y.: IEEE, 2020. P. 269. https://doi.org/10.1109/APEDE48864.2020.9255492
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





