Stability Study of Graphene Oxide Based Aqueous Nanofluids for Solar Absorption Application

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this study, the stability of graphene oxide based aqueous nanofluids are tested under boiling–condensation conditions. The graphene oxide nanofluids remain very stable, and their transmittance in solar spectral region varies less than 6% after 630g centrifugation for 3 h at 90°C without boiling. However, when undergoing boiling and condensation processes, the solar transmittance of the graphene oxide nanofluids declines quickly, from 38 to 4%, during the first 24 h of testing, before leveling out in the final 120 h of testing. A decrease in the fluid transmittance is due to the partial reduction of graphene oxide nanosheets, as evidenced by X-ray photoelectron spectrometer and Fourier transform infrared spectroscopy technique measurements. It is surprising that thermal reduction of graphene oxide in aqueous fluids occurs at such a low temperature (~100°C), when undergoing boiling and condensation. This temperature is much lower than the previously reported thermal reduction temperature (180°C and above) without boiling. The low-temperature thermal reduction of graphene oxide may be attributed to the bubble cavitation associated with boiling in aqueous fluids.

Авторлар туралы

J. Zhou

Department of Mechanical Engineering, University of Maryland

Email: baoyang@umd.edu
United States, MD 20742, College Park

B. Yang

Department of Mechanical Engineering, University of Maryland

Email: baoyang@umd.edu
United States, MD 20742, College Park

N. van Velson

Advanced Cooling Technologies, Inc.

Email: baoyang@umd.edu
United States, PA 17601, Lancaster

J. Charles

Advanced Cooling Technologies, Inc.

Email: baoyang@umd.edu
United States, PA 17601, Lancaster

J. Wang

Advanced Cooling Technologies, Inc.

Хат алмасуға жауапты Автор.
Email: baoyang@umd.edu
United States, PA 17601, Lancaster

Әдебиет тізімі

  1. Liu J., Ye Z., Zhang L., Fang X., Zhang Z. A Combined Numerical and Experimental Study on Graphene/Ionic Liquid Nanofluid Based Direct Absorption Solar Collector // Solar Energy Materials and Solar Cells. 2015. V. 136. P. 177.
  2. Ni G., Miljkovic N., Ghasemi H., Huang X., Boriskina S.V., Lin C.T., Chen G. Volumetric Solar Heating of Nanofluids for Direct Vapor Generation // Nano Energy. 2015. V. 17. P. 290.
  3. Saidur R., Meng T.C., Said Z., Hasanuzzaman M., Kamyar A. Evaluation of the Effect of Nanofluid-based Absorbers on Direct Solar Collector // Int. J. Heat Mass Transfer. 2012. V. 55. № 21–22. P. 5899.
  4. Lenert A., Wang E.N. Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion // Solar Energy. 2012. V. 86(1). P. 253.
  5. Taylor R.A., Phelan P.E., Otanicar T.P., Walker C.A., Nguyen M., Trimble S., Prasher R. Applicability of Nanofluids in High Flux Solar Collectors // Journal of Renewable and Sustainable Energy. 2011. V. 3(2). 023104.
  6. Aguilar T., Sani E., Mercatelli L., Carrillo-Berdugo I., Torres E., Navas J. Exfoliated Graphene Oxide-based Nanofluids with Enhanced Thermal and Optical Properties for Solar Collectors in Concentrating Solar Power // Journal of Molecular Liquids. 2020. V. 306. 112862.
  7. Cham sa-ard W., Fawcett D., Fung C.C., Chapman P., Rattan S., Poinern G.E.J. Synthesis, Characterisation and Thermo-physical Properties of Highly Stable Graphene Oxide-based Aqueous Nanofluids for Potential Low-temperature Direct Absorption Solar Applications // Scientific Reports. 2021. V. 11. 16549.
  8. Khullar V., Tyagi H., Hordy N., Otanicar T.P., Hewakuruppu Y., Modi P., Taylor R.A. Harvesting Solar Thermal Energy Through Nanofluid-based Volumetric Absorption Systems // Int. J. Heat Mass Transfer. 2014. V. 77. P. 377.
  9. Otanicar T.P., Phelan P.E., Prasher R.S., Rosengarten G., Taylor R.A. Nanofluid-based Direct Absorption Solar Collector // Journal of Renewable and Sustainable Energy. 2010. V. 2(3). 033102.
  10. Colangelo G., Favale E., de Risi A., Laforgia D. Results of Experimental Investigations on the Heat Conductivity of Nanofluids Based on Diathermic Oil for High Temperature Applications // Applied Energy. 2012. V. 97. P. 828.
  11. Otanicar T.P., Phelan P.E., Golden J.S. Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems // Solar Energy. 2009. V. 83(7). P. 969.
  12. Yu W., Xie H., Bao D. Enhanced Thermal Conductivities of Nanofluids Containing Graphene Oxide Nanosheets // Nanotechnology. 2009. V. 21(5). 055705.
  13. Vakili M., Hosseinalipour S.M., Delfani S., Khosrojerdi S., Karami M. Experimental Investigation of Graphene Nanoplatelets Nanofluid-based Volumetric Solar Collector for Domestic Hot Water Systems // Solar Energy. 2016. V. 131. P. 119.
  14. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Ruoff R.S. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide // Carbon. 2007. V. 45(7). P. 1558.
  15. Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly (Sodium 4-styrenesulfonate) // J Materials Chem. 2006. V. 16(2). P. 155.
  16. Cassagneau T., Guérin F., Fendler J.H. Preparation and Characterization of Ultrathin Films Layer-by-layer Self-assembled from Graphite Oxide Nanoplatelets and Polymers // Langmuir. 2000. V. 16(18). P. 7318.
  17. Kotov N.A., Dékány I., Fendler J.H. Ultrathin Graphite Oxide–polyelectrolyte Composites Prepared by Self-assembly: Transition Between Conductive and Non-conductive States // Advanced Materials. 1996. 8(8). P. 637.
  18. Kovtyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E., Chizhik S.A., Buzaneva E.V., Gorchinskiy A.D. Layer-by-layer Assembly of Ultrathin Composite Films from Micron-sized Graphite oxide Sheets and Polycations // Chemistry of Materials. 1999. V. 11(3). P. 771.
  19. Nuncira J., Seara L.M., Sinisterra R.D., Caliman V., Silva G.G. Long-term Colloidal Stability of Graphene Oxide Aqueous Nanofluids // Fullerenes, Nanotubes and Carbon Nanostructures. 2020. V. 28(5). P. 407.
  20. Hirata M., Gotou T., Ohba M. Thin-film Particles of Graphite Oxide. 2: Preliminary Studies for Internal Micro Fabrication of Single Particle and Carbonaceous Electronic Circuits // Carbon. 2005. V. 43(3). P. 503.
  21. Szabó T., Szeri A., Dékány I. Composite Graphitic Nanolayers Prepared by Self-assembly Between Finely Dispersed Graphite Oxide and a Cationic Polymer // Carbon. 2005. V. 43(1). P. 87.
  22. Liu X., Wang X., Huang J., Cheng G., He Y. Volumetric Solar Steam Generation Enhanced by Reduced Graphene Oxide Nanofluid // Applied Energy. 2018. V. 220. P. 302.
  23. Swinehart D.F. The Beer–Lambert Law // Journal of Chemical Education. 1962. V. 39(7). P. 333.
  24. Xue Y., Zhu L., Chen H., Qu J., Dai L. Multiscale Patterning of Graphene Oxide and Reduced Graphene Oxide for Flexible Supercapacitors // Carbon. 2015. V. 92. P. 305.
  25. Emiru T.F., Ayele D.W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production // Egyptian Journal of Basic and Applied Sciences. 2017. V. 4(1). P. 74.
  26. Niu Y., Fang Q., Zhang Z, Zhang P., Li Y. Reduction and Structural Evolution of Graphene Oxide Sheets under Hydrothermal Treatment // Phys. Lett. A. 2016. V. 380. № 38. P. 3128.

© J. Zhou, B. Yang, N. van Velson, J. Charles, J. Wang, 2023