Fayans Functional. Constraints from Equations of State

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A variational analysis of the Fayans energy-density functional is performed with allowance for the earlier unused isovector parameters @ in the volume part of the functional. The quality of the previous fit to nuclear densities, masses of nuclei, single-particle levels, and charge radii remains unchanged under the additional condition of description of the giant-dipole-resonance energy in the @Pb nucleus. The effect of variations in the isovector parameter @ on the equations of state for infinite symmetric nuclear matter and pure neutron matter is determined. The density dependence of the symmetry energy @ and of its derivative @ is studied. For the parameter @, a range is established that is consistent with the estimated values of the symmetry energy @ and its derivative @ at the equilibrium density @, which are parameters of the equation of state for symmetric nuclear matter. These values were obtained earlier from a simultaneous analysis of the values of the ‘‘neutron skin’’ @ of @Pb and @Ca nuclei from the PREX-II and CREX experiments, from the results of ab initio calculations of equations of state and ground-state properties of nuclei, and from astrophysical observations and data on the discovery of gravitational waves from the merger of binary neutron stars by the LIGO-Virgo Collaboration in 2017.

作者简介

I. Borzov

National Research Centre Kurchatov Institute; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna

Email: Borzov_IN@nrcki.ru
Moscow, Russia; Moscow oblast, Russia

S. Tolokonnikov

National Research Centre Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: Tolokonnikov_SV@nrcki.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

参考

  1. В. Е. Фортов, Уравнения состояния вещества. От идеального газа до кварк-глюонной плазмы (Физматлит, Москва, 2013).
  2. C. Drischler, J. W. Holt, and C. Wellenhofer, Annu. Rev. Nucl. Part. Sci. 71, 403 (2021).
  3. D. Testov, D. Verney, B. Roussire, J. Bettane, F. Didierjean, K. Flanagan, S. Franchoo, F. Ibra- him, E. Kuznetsova, R. Li, B. Marsh, I. Matea, Yu. Penionzhkevich, H. Pai, V. Smirnov, E. Sokol, et al., Nucl. Instrum. Methods A 815, 96 (2016).
  4. J. Estee et al. (SRIT Collab.), Phys. Rev. Lett. 126, 162701 (2021).
  5. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).
  6. D. Adhikari et al. (PREX-II Collab.), Phys. Rev. Lett. 126, 172502 (2021).
  7. D. Adhikari et al. (CREX Collab.), Phys. Rev. Lett. 129, 042501 (2022).
  8. J. M. Lattimer, Nuclear Matter Symmetry Energy From Experiment, Theory and Observation, in Workshop at INT S@INT Seminar, Seattle, November 9, 2021.
  9. P.-G. Reinhard, Roca-Maza, and W. Nazarewicz, Phys. Rev. Lett. 127, 232501 (2022); 129, 232501 (2022).
  10. R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev. Lett. 127, 192701 (2021).
  11. R. Essick, P. Landry, A. Schwenk, and I. Tews, Phys. Rev. 104, 065804 (2021).
  12. http://cdfe.sinp.vsu.ru

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023