Investigation of the Characteristics of a Graphene-Based Thermal Interface for Cooling Integrated Microcircuits
- Autores: Prokhorov D.A.1, Zuev S.M.1
- 
							Afiliações: 
							- MIREA – Russian Technological University, 119454, Moscow, Russia
 
- Edição: Volume 59, Nº 2 (2023)
- Páginas: 167-174
- Seção: НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
- URL: https://cardiosomatics.ru/0044-1856/article/view/663856
- DOI: https://doi.org/10.31857/S0044185623700201
- EDN: https://elibrary.ru/SYVRTR
- ID: 663856
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A study was made of a thermal interface based on a two-dimensional allotropic modification of carbon (graphene), presented in the form of a powder, for cooling integrated circuits. Such physical properties of the thermal interface as thermal conductivity, heat capacity, thermal diffusivity, and density are determined by the empirical method. The process of heat transfer in the most efficient thermal interface sample during the operation of integrated circuits in the ANSYS engineering analysis system is presented. The prospects of using pressed graphene powder as a thermal interface in order to eliminate the use of a binder are described. The paper also makes a comparison with the most effective type of thermal interfaces currently in use.
Sobre autores
D. Prokhorov
MIREA – Russian Technological University, 119454, Moscow, Russia
														Email: prohorovdmitrii97@yandex.ru
				                					                																			                												                								Россия, 119454, Москва, Проспект Вернадского, 78						
S. Zuev
MIREA – Russian Technological University, 119454, Moscow, Russia
							Autor responsável pela correspondência
							Email: sergei_zuev@mail.ru
				                					                																			                												                								Россия, 119454, Москва, Проспект Вернадского, 78						
Bibliografia
- Zuev S.M., Prokhorov D.A., Maleev R.A., Debelov V.V., Lavrikov A.A // Russian Microelectronics. 2021. V. 50. № 6. P. 404–411.
- Bunch J.S., Yaish Y., Brink M., Bolotin K., McEuen P.L. // Nano Letters. 2005. V. 5. № 2. P. 287–290.
- O’Neill C., Johnson M.B., De Armond D., Zhang L., Alvarez N., Shanov V.N., White M.A. // Carbon Trends. 2021. V. 4. P. 7.
- Sarkarat M., Lanagan M., Ghosh D., Lottes A., Budd K., Rajagopalan R. // Composites Part C: Open Access. 2020. V. 2. P. 100023.
- Щука А.А. Наноэлектроника: учебник для вузов под общей редакцией А.С. Сигова. Москва: Издательство Юрайт, 2021. С. 88.
- Господарев И.А., Гришаев В.И., Манжелий Е.В., Сыркин Е.С., Феодосьев С.Б. // Физика Низких Температур (Харьков). 2017. Т. 43. № 2. С. 328.
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей – 2-е изд., доп. и пер. Москва: Издательство Наука, 1972. С. 414.
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей – 2-е изд., доп. и пер. Москва: Издательство Наука, 1972. С. 423.
- Liu J., Yi L. Liquid Metal Biomaterials, Springer Series in Biomaterials Science and Engineering. XVII. 428. 2018. P. 96.
- Yu S., Kavianya M. // The J. Chemical Physics. 2014. V. 140. № 064303. P. 1.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










