Акустические солитоны в геликоидах и спиральных нанолентах графена
- Авторы: Савин А.В1,2, Савина О.И2
- 
							Учреждения: 
							- Федеральный исследовательский центр химической физики им. Н. Н. Семенова Российской академии наук
- Российский экономический университет им. Г. В. Плеханова
 
- Выпуск: Том 163, № 6 (2023)
- Страницы: 806-815
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0044-4510/article/view/653499
- DOI: https://doi.org/10.31857/S0044451023060068
- EDN: https://elibrary.ru/DELANI
- ID: 653499
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Проведено численное моделирование динамики локальных областей продольного сжатия в геликоидах графена и в спиральных углеродных нанолентах. Показано, что движение сверхзвукового акустического солитона с постоянной скоростью без излучения фононов может происходить только в геликоидах с поперечным радиусом R < 0.62 нм с безразмерной скоростью 1 < s < 1.4. В геликоидах большего радиуса и во всех спиральных углеродных нанолентах движение солитоноподобного возбуждения всегда сопровождается интенсивным излучением фононов (чем больше радиус спиральной структуры, тем сильнее излучение).
Об авторах
А. В Савин
Федеральный исследовательский центр химической физики им. Н. Н. Семенова Российской академии наук;Российский экономический университет им. Г. В. Плеханова
														Email: asavin@chph.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 117997, Moscow, Russia						
О. И Савина
Российский экономический университет им. Г. В. Плеханова
							Автор, ответственный за переписку.
							Email: asavin@chph.ras.ru
				                					                																			                												                								117997, Moscow, Russia						
Список литературы
- Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, and K. Matsuda, J. Amer. Chem. Soc. 140, 4317 (2018); https://doi.org/10.1021/jacs.7b13412.
- Y. Nakakuki, T. Hirose, and K. Matsuda, J. Amer. Chem. Soc. 140, 15461 (2018); https://doi.org/10.1021/jacs.8b09825.
- Y. Zhao, C. Zhang, D. D. Kohler, J. M. Scheeler, J. C. Wright, P. M. Voyles, and S. Jin, Science 370, 442 (2020); https://doi.org/10.1126/science.abc4284.
- S. Avdoshenko, P. Koskinen, H. Sevincli, A. A. Popov, and C. G. Rocha, Sci. Rep. 3, 1632 (2013); https://doi.org/10.1038/srep01632.
- T. Korhonen and P. Koskinen, AIP Advances 4, 127125 (2014); https://doi.org/10.1063/1.4904219.
- X. Zhang and M. Zhao, Sci. Rep. 4, 5699 (2014); https://doi.org/10.1038/srep05699.
- V. Atanasov and A. Saxena, Phys. Rev. B 92, 035440 (2015); https://doi.org/10.1103/PhysRevB.92.035440.
- X. Xu, B. Liu, W. Zhao, Y. Jiang, L. Liu, W. Li, G. Zhang, and W. Q. Tian, Nanoscale 9, 9693 (2017); https://doi.org/10.1039/C7NR03432F.
- J. Tan, X. Zhang, W. Liu, X. He, and M. Zhao, Nanotechnology 29, 205202 (2018); https://doi.org/10.1088/1361-6528/aab1d9.
- V. V. Porsev, A. V. Bandura, S. I. Lukyanov, and R. A. Evarestov, Carbon 152, 755 (2019); https://doi.org/10.1016/j.carbon.2019.06.036.
- Z.-P. Liu, Y.-D. Guo, X.-H. Yan, H.-L. Zeng, X.-Y. Mou, Z.-R. Wang, and J.-J. Wang, J. Appl. Phys. 126, 144303 (2019); https://doi.org/10.1063/1.5118738.
- R. Thakur, P. K. Ahluwalia, A. Kumar, and R. Sharma, Physica E 129, 114638 (2021); https://doi.org/10.1016/j.physe.2021.114638.
- Z. Zhou, L. Yan, X.-M. Wang, D. Zhang, and J.-Y. Yan, Results Phys. 35, 105351 (2022); https://doi.org/10.1016/j.rinp.2022.105351.
- F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 16, 34 (2016); https://doi.org/10.1021/acs.nanolett.5b02430.
- V. Porsev and R. Evarestov, Nanomaterials 13, 415 (2023); https://doi.org/10.3390/nano13030415.
- P. Sestak, J. Wu, J. He, J. Pokluda, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 18684 (2015); https://doi.org/10.1039/c5cp02043c.
- H. Zhan, Y. Zhang, C. Yang, G. Zhang, and Y. Gu, Carbon, 120, 258 (2017); https://doi.org/10.1016/j.carbon.2017.05.044.
- H. Zhan, G. Zhang, C. Yang, and Y. Gu, Nanoscale, 10, 18961 (2018); https://doi.org/10.1039/C8NR04882G.
- S. Norouzi and M. M. S. Fakhrabadi, Appl. Phys. A 125, 321 (2019); https://doi.org/10.1007/s00339-019-2623-8.
- C. Zhu, J. Ji, Z. Zhang, S. Dong, N. Wei, and J. Zhao, Mech. Mater. 153, 103683 (2021); https://doi.org/10.1016/j.mechmat.2020.103683.
- R. Liu, J. Zhao, L. Wang, and N. Wei, Nanotechnology 31, 025709 (2020); https://doi.org/10.1088/1361-6528/ab4760.
- A. Shari an, A. Moshfegh, A. Javadzadegan, H. H. Afrouzi, M. Baghani, and M. Baniassadi, Phys. Chem. Chem. Phys. 21, 12423 (2019); https://doi.org/10.1039/C9CP01361J.
- H. Li, H. H. Afrouzi, M. M. A. Zahra, B. S. Bashar, F. Fathdal, S. K. Hadrawi, A. Alizadeh, M. Hekmatifar, K. Al-Majdi, and I. Alhani, Colloids Surf. A: Physicochem. Eng. Asp. 656, 130324 (2023); https://doi.org/10.1016/j.colsurfa.2022.130324.
- H. Zhan, G. Zhang, C. Yang, and Y. T. Gu, Phys. Chem. C 122, 7605 (2018); https://doi.org/10.1021/acs.jpcc.8b00868.
- S. Norouzi and M. M. S. Fakhrabadi, J. Phys. Chem. Sol. 137, 109228 (2020); https://doi.org/10.1016/j.jpcs.2019.109228.
- A. Shari an, T. Karbaschi, A. Rajabpour, M. Baghani, J.Wu, and M. Baniassadi, Int. J. Heat Mass Transfer 189, 122719 (2022); https://doi.org/10.1016/j.ijheatmasstransfer.2022.122719.
- V. F. Nesterenko, Philos. Trans. Royal Soc. A 376, 2127 (2018); https://doi.org/10.1098/rsta.2017.0130
- P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys. Rev. E 56, 877 (1997); https://doi.org/10.1103/PhysRevE.56.877.
- Y. Zolotaryuk, A. V. Savin, and P. L. Christiansen, Phys. Rev. B 57, 14213 (1998); https://doi.org/10.1103/PhysRevB.57.14213.
- W. D. Cornell, W. P. Cieplak, C. I. Bayly, R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Amer. Chem. Soc. 117, 5179 (1995); https://doi.org/10.1021/ja00124a002.
- A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010); https://doi.org/10.1103/PhysRevB.82.195422.
- A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 98, 193106 (2011); https://doi.org/10.1063/1.3590256.
- A. V. Savin and Y. S. Kivshar, Phys. Rev. B 85, 125427 (2012); https://doi.org/10.1103/PhysRevB.85.125427.
- A. V. Savin and Y. S. Kivshar, Sci. Rep. 7, 4668 (2017); https://10.1038/s41598-017-04987-w.
- S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112 (14), 6472 (2000); https://doi.org/10.1063/1.481208.
- R. Setton, Carbon 34(1), 69 (1996); https://doi.org/10.1016/0008-6223(95)00136-0.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

