Experimental and Theoretical Investigation of Inclusion Complexes of β-Cyclodextrin with Fingolimod
- Autores: Garibyan A.A.1, Delyagina E.S.1,2, Antipova M.L.1, Odintsova E.G.1, Petrenko V.E.1, Terekhova I.V.1
- 
							Afiliações: 
							- G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
- Ivanovo State University
 
- Edição: Volume 97, Nº 3 (2023)
- Páginas: 378-385
- Seção: PHYSICAL CHEMISTRY OF SOLUTIONS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.03.2023
- URL: https://cardiosomatics.ru/0044-4537/article/view/668797
- DOI: https://doi.org/10.31857/S0044453723030135
- EDN: https://elibrary.ru/DXRADY
- ID: 668797
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The solubilizing effect of β-cyclodextrin on fingolimod, a new generation immunosuppressant, is studied for the first time. A possible 20× increase in the solubility of fingolimod due to the penetration of the hydrophobic fragment of the drug molecule into the macrocyclic cavity of the cyclodextrin is shown. Data driven 1H NMR spectroscopy and computer modeling suggest the configuration of the resulting inclusion complexes. The constant of the complex’s stability and its energy of complexation are calculated, and the formation of hydrogen bonds between fingolimod and β-cyclodextrin is considered.
Palavras-chave
Sobre autores
A. Garibyan
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
														Email: ivt@isc-ras.ru
				                					                																			                												                								153025, Ivanovo, Russia						
E. Delyagina
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences; Ivanovo State University
														Email: ivt@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia; 153025, Ivanovo, Russia						
M. Antipova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
														Email: ivt@isc-ras.ru
				                					                																			                												                								153025, Ivanovo, Russia						
E. Odintsova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
														Email: ivt@isc-ras.ru
				                					                																			                												                								153025, Ivanovo, Russia						
V. Petrenko
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
														Email: ivt@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
I. Terekhova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ivt@isc-ras.ru
				                					                																			                												                								153025, Ivanovo, Russia						
Bibliografia
- Salem H., Abo Elsoud F.A., Heshmat D. // Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2021. V. 250. P. 119331. https://doi.org/10.1016/j.saa.2020.119331
- Jaafar N., Zeineddine M., Massouh J. et al. // Mult. Scler. Relat. 2019. V. 36. P. 101437. https://doi.org/10.1016/j.msard.2019.101437
- Strader C.R., Pearce C.J., Orberlies N.H. // J. Nat. Prod. 2011. V. 74. № 4. P. 900. https:// doi.org/https://doi.org/10.1021/np2000528
- Al-Izki S., Pryce G., Jackson S.J. et al. // Mult. Scler. J. 2011. V. 17. № 8. P. 939. https://doi.org/10.1177/1352458511400476
- Pelletier D., Hafler M.D., Hafler D.A. // N. Engl. J. Med. 2012. V. 366. P. 339. https://doi.org/10.1056/NEJMct1101691
- Aytan N., Choi J.-K., Carreras I. // Sci. Rep. 2016. V. 6. № 1. P. 24939. https://doi.org/10.1038/srep24939
- Nasser A. // J. Basic. Clin. Physiol. Pharmacol. 2019. V. 30. № 5. P. 31469655. https://doi.org/10.1515/jbcpp-2019-0063
- Medeiros da Silva M., Odebrecht de Souza R., Gonçalves M.V.M. // J. Neuroimmunol. 2022. V. 2. P. 100071. https://doi.org/10.1016/j.nerep.2022.100071
- Gomez-Mayordomo V., Montero-Escribano P., Matías-Guiu J.A. et al. // J. Med. Virol. 2020. V. 93. № 1. P. 546. https://doi.org/10.1002/jmv.26279
- Mona J., Kuo C.-J., Perevedentseva E. et al. // Diam. Relat. Mater. 2013. V. 39. P. 73. https://doi.org/10.1016/j.diamond.2013.08.001
- Center for drug Evaluation and Research. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/nda/ 2010/022527orig1s000clinpharmr.pdf
- Tamakuwala M., Stagni G. // AAPS Pharm. Sci. Tech. 2016. V. 17. P. 907. https://doi.org/10.1208/s12249-015-0415-9
- Ward M.D., Jones D.E., Goldman M.D. // Expert Opin. Drug Saf. 2014. V. 13. P. 989. https://doi.org/10.1517/14740338.2014.920820
- Miranda R.R., Ferreira N.N., de Souza E.E. et al. // ACS Appl. Bio Mater. 2022. V. 5. P. 3371. https://doi.org/10.1021/acsabm.2c00349
- Zeraatpisheh Z., Mirzaei E., Nami M. et al. // Eur. J. Neurosci. 2021. V. 54. № 4. P. 5620. https://doi.org/10.1111/ejn.15391
- Shirmard L.R., Ghofrani M., Javan N.B. et al. // Drug Dev. Ind. Pharm. 2020. V. 46. № 2. P. 318. https://doi.org/10.1080/03639045.2020.1721524
- Shahsavari S., Shirmard L.R., Amini M. et al. // J. Pharm. Sci. 2016. V. 106. P. 176. https://doi.org/10.1016/j.xphs.2016.07.026
- Javan N.B., Shirmard L.R., Omid N.J. et al. // J. Microencapsul. 2016. V. 33. № 5. P. 1. https://doi.org/10.3109/10837450.2015.1108982
- Zou X., Jiang Z., Li L. et al. // Artif. Cells Nanomed. Biotechnol. 2021. V. 49. № 1. P. 83. https://doi.org/10.1080/21691401.2021.1871620
- Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. № 5. P. 201. https://doi.org/10.1002/ddr.21452
- Terekhova I., Kritskiy I., Agafonov M. et al. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 9102. https://doi.org/10.3390/ijms21239102
- Garibyan A., Delyagina E., Agafonov M. et al. // J. Mol. Liq. 2022. V. 360 P. 119548. https://doi.org/10.1016/j.molliq.2022.119548
- Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
- dos Passos Menezes P., de Araújo Andrade T., Frank L.A. et al. // Int. J. Pharm. 2019. V. 559. P. 312. https://doi.org/10.1016/j.ijpharm.2019.01.041
- Job P. // Annual Chemistry. 1928. V. 9. P. 113.
- Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Frisch M.J., Trucks G.W., Schlegel H.B. et al.// Wallingford, CT, USA, 2016
- Morris G.M., Huey R., Lindstrom W. et al. // J. Comp. Chem. 2009. V. 16. P. 2785. https://doi.org/10.1002/jcc.21256
- GROMACS 2019.6. https://manual.gromacs.org/documentation/2019.6.
- Nose S. // Mol. Phys. 1984. V. 52. P. 255. https://doi.org/10.1080/00268978400101201
- Hoover W.G. // Phys. Rev. A. 1985. V. 31. P. 1695. https://doi.org/10.1103/PhysRevA.31.1695
- Allen M.P., Tildesley D.J. // Computer Simulation of Liquids, Clarendon Press, London, 1987.
- Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
- Essmann M.U., Perera L., Berkowitz M.L. et al. // J. Chem. Phys. 1995. V. 103. P. 8577. https://doi.org/10.1063/1.470117
- Hess M.B., Bekker H., Berendsen H.J.C. et al. // J. Comput. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
- Jorgensen W.L., Tirado-Rives J. // PNAS. 2005. V. 102. P. 6665. https://doi.org/10.1073/pnas.0408037102
- Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. P. 3864. https://doi.org/10.1021/acs.jpcb.7b00272
- Dodda L.S., de Vaca I.C., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. Web Server issue W331. https://doi.org/10.1093/nar/gkx312
- Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. P. 11225. https://doi.org/10.1021/ja9621760
- Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. V. 14. P. 33. https://doi.org/10.1016/0263-7855(96)00018-5
- Higuchi T., Connors K. // Adv. Anal. Chem. Instrum. 1964. V. 4. P. 117.
- Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
- Prajapati M., Loftsson T. // J. Drug Deliv. Sci. Technol. 2022. V. 69. P. 103106. https://doi.org/10.1016/j.jddst.2022.103106
- Szejtli J. // Chem. Rev. 1998. V. 98. P. 1743. https://doi.org/10.1021/cr970022c
- Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. P. 201. https://doi.org/10.1002/ddr.21452
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








