Peculiarities of corrosion of low-carbon steel in the flow of solutions of acids of different anionic composition containing iron(III) salts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Corrosion of low-carbon steel in solutions of HCl, HCl + H3PO4, and H3PO4 containing Fe(III) salts is studied. In the systems involved, the corrosion of steel results from its reaction with the acid solution and Fe(III) salt. In the discussed media, partial reactions of anodic ionization of iron, cathodic reduction of H+ and Fe(III) cations are realized on steel. The first two reactions are characterized by kinetic control, and the latter is characterized by diffusion control. The accelerating effect of Fe(III) cations on steel corrosion in the media studied is predominantly due to Fe(III) reduction. Binding of Fe(III) cations into complex compounds with anions of the corrosive medium reduces the value of their diffusion coefficient (DFe(III)). The value of DFe(III) is maximum in the HCl solution and minimum in the H3PO4 solution. The rate of partial cathodic reduction reaction of Fe(III) is determined by the value of DFe(III). As a result, the accelerating effect of Fe(III) on the cathodic reaction and, hence, the general corrosion of steel in the flow of aggressive medium is most significant in the HCl solution and least significant in the H3PO4 solution.

Texto integral

Acesso é fechado

Sobre autores

Ya. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Autor responsável pela correspondência
Email: avdeevavdeev@mail.ru
Rússia, 31–4, Leninsky prospect, 119071 Moscow

A. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Rússia, 31–4, Leninsky prospect, 119071 Moscow

T. Andreeva

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Rússia, 31–4, Leninsky prospect, 119071 Moscow

Bibliografia

  1. Батраков В.В., Батраков В.П., Пивоварова Л.И., Соболь В.В. Коррозия конструкционных материалов. Газы и неорганические кислоты. Справочное издание. В двух книгах. Кн. 2. Неорганические кислоты. 2-е изд., перераб. и доп. М.: Интермет Инжиниронг, 2000. 320 с.
  2. Verma C., Quraishi M.A., Ebenso E.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1261. doi: 10.17675/2305-6894-2020-9-4-5.
  3. Meroufel A.A. / In: Corrosion and Fouling Control in Desalination Industry. Eds. V.S. Saji, A.A. Meroufel, A.A. Sorour. Springer. Cham. 2020. P. 209. doi: 10.1007/978-3-030-34284-5_10
  4. Авдеев Я.Г., Кузнецов Ю.И. // Журн. физ. химии. 2023. Т. 97. № 3. C. 305. doi: 10.31857/S0044453723030056. [Avdeev Ya.G., Kuznetsov Yu.I. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 413. doi: 10.1134/S0036024423030056].
  5. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86, P. 17. doi: 10.1016/j.corsci.2014.04.044.
  6. Avdeev Ya.G., Andreeva T.E., Panova A.V., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 1. P. 139. doi: 10.17675/2305-6894-2019-8-1-12.
  7. Авдеев Я.Г., Панова А.В., Андреева Т.Э. // Журн. физ. хим. 2023. Т. 97. № 5. C. 730. doi: 10.31857/S0044453723050059. [Avdeev Ya.G., Panova A.V., Andreeva T.E. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1018. doi: 10.1134/S0036024423050059].
  8. Richardson J.A., Bhuiyan M.S.H. / In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. 21 p. doi: 10.1016/B978-0-12-803581-8.10372-8.
  9. Richardson J.A. / In: Shreir’s Corrosion. Eds. B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott. Elsevier. 2010. P. 1207. doi: 10.1016/B978-044452787-5.00197-9.
  10. Кузин А.В., Горичев И.Г., Шелонцев В.А., и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2021. V. 62. № 6. С. 515. [Kuzin A.V., Gorichev I.G., Shelontsev V.A., et al. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 398. doi: 10.3103/S0027131421060055].
  11. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. 132 с.
  12. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513. [Pletnev M.A., Reshetnikov S.M. // Prot. Met. 2004. V. 40. P. 460—467. doi: 10.1023/B: PROM.0000043064.20548.e0]
  13. Антропов Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348.
  14. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2—4. P. 325. doi: 10.1016/0013-4686(61)80026-1.
  15. Chin R.J., Nobe K. // J. Electrochem. Soc. 1972. V. 119. P. 1457. doi: 10.1149/1.2404023.
  16. Florianovich G.M., Sokolova L.A.. Kolotyrkin Ya.M. // Electrochim. Acta. 1967. V. 12. № 7. P. 879. doi: 10.1016/0013-4686(67)80124-5.
  17. Решетников С.М., Макарова Л.Л. Окислительно-восстановительные и адсорбционные процессы на поверхности твердых металлов. Ижевск: Удмуртский гос. ун-т. 1979. С. 25.
  18. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2021. Т. 95. № 6. С. 885.doi: 10.31857/S0044453721060029. [Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2021. V. 95. № . 6. P. 1128. doi: 10.1134/S0036024421060029]
  19. Захаров В.А., Сонгина О.А., Бектурова Г.Б. // Журн. аналит. химии. 1976. Т. 31. № 11. С. 2212.
  20. Avdeev Ya.G., Andreeva T.E., Panova A.V., Yurasova E.N. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 2. P. 411. doi: 10.17675/2305-6894-2019-8-2-18.
  21. Belqat B., Laghzizil A., Elkacimi K., et al. // J. of Fluorine Chem. 2000. V. 105. № 1. P. 1. doi: 10.1016/S0022-1139(00)00256-6.
  22. Techniques of electrochemistry: Electrode Processes. V. 1. / Eds.: E. Yeager and A.J. Salkind. New York: Published by John Wiley & Sons Inc, 1972. 592 p.
  23. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С. 255.
  24. Strahm U., Patel R.C., Matijevic E. // J. Phys. Chem. 1979. V. 83. № 13. P. 1689. doi: 10.1021/j100476a003
  25. Kim, M.S., Kim, C.H. and Sohn, Y.S. // J. of the Korean Chemical Society. 1975. V. 19. № 5. P. 325.
  26. Wilhelmy R.B., Patel R.C., Matijevic E. // Inorg. Chem. 1985. V. 24. № 20. P. 3290. doi: 10.1021/ic00214a039
  27. Филатова Н.Л., Вендило А.Г., Санду Р.А. // Журн. неорг. химии. 2012. Т. 57. № 9. С. 1355. [Filatova L.N., Vendilo A.G., Sandu R.A. // Russ. J. Inorg. Chem. 2012. V. 57. № 9. P. 1272. doi: 10.1134/S0036023612090057]
  28. Плэмбек Дж. Электрохимические методы анализа. Пер. с англ. М.: Мир, 1985. 496 с.
  29. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2022. Т. 96. № 2. C. 281.doi: 10.31857/S0044453722020030. [Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2022. V. 96. № 2. P. 423. doi: 10.1134/S0036024422020030]
  30. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  31. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с.
  32. Du C., Tan Q., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 171. doi: 10.1016/B978-0-444-63278-4.00005-7.
  33. Jia Z., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 199. doi: 10.1016/B978-0-444-63278-4.00006-9.
  34. Справочник химика. Т. 3. Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. 2-е изд. / Под. ред. Б.П. Никольского. М.-Л.: Химия, 1965. С. 715.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Potentials of a platinum electrode in argon-deaerated 2 M HCl (1), 1 M HCl + 1 M H3PO4 (2), and 2 M H3PO4 (3) containing x×0.1 M Fe(III) + (1–x)×0.1 M Fe(II), depending on the ratio of Fe(III) and Fe(II) content at t = 20 °C; 1–3 — experimental data, 4 — model constructed based on equation (13).

Baixar (78KB)
3. Fig. 2. Cyclic voltammogram of a platinum electrode in argon-deaerated acid solutions containing 0.1 M Fe(III) at a potential scan rate of 0.10 V s-1, t = 25 °C.

Baixar (72KB)
4. Fig. 3. Polarization curves of a steel disk St3 in 2 M HCl (a), 1 M HCl + 1 M H3PO4 (b), 2 M H3PO4 (c) in the presence of Fe(III) (mol/l): 1 — 0, 2 — 0.01, 3 — 0.02, 4 — 0.05, 5 — 0.10, n = 460 rpm.

Baixar (141KB)
5. Fig. 4. Dependences of the cathode current density on the rotation frequency of the St3 steel disk in 2 M HCl (a), 1 M HCl + 1 M H3PO4 (b), 2 M H3PO4 (c). Points are experimental data; E = –0.30 V, t = 25°C.

Baixar (141KB)
6. Fig. 5. Dependences of the cathode current density on the rotation frequency of the St3 steel disk in 2 M HCl (a), 1 M HCl + 1 M H3PO4 (b), 2 M H3PO4 (c), plotted with a correction for natural convection. Points are experimental data; E = –0.30 V, t = 25°C.

Baixar (136KB)
7. Fig. 6. Simulation of the dependence of the cathode current density on the rotation frequency of the St3 steel disk in 2 M HCl (a), 1 M HCl + 1 M H3PO4 (b), 2 M H3PO4 (c) in the presence of Fe(III) (mol/l): 1 — 0, 2 — 0.01, 3 — 0.02, 4 — 0.05, 5 — 0.10. When constructing the dependencies, the values ​​of the diffusion coefficients of Fe(III) cations were used, obtained from the cyclic voltammetry data of the Pt electrode (see Table 2), t = 25°C.

Baixar (108KB)
8. Fig. 7. Dependences of the corrosion rate of 08 ps steel in 2 M HCl (a, a’), 1 M HCl + 1 M H3PO4 (b, b’), 2 M H3PO4 (c, c’) containing Fe(III) on the rotation frequency of the propeller stirrer in a corrosive environment. Points are experimental data; a, b, c are experimental dependencies, a’, b’, c’ are dependencies constructed with a correction for the natural convection of the corrosive environment. Duration of experiments is 2 h, t = 20±2°C.

Baixar (398KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025