An Investigation of the Properties of Binary and Ternary Mixtures Containing Morpholine
- 作者: Zhuchkov V.I.1, Raeva V.M.1, Ul’yanova A.A.2
- 
							隶属关系: 
							- MIREA–Russian Technological University, Lomonosov Institute of Fine Chemical Technologies
- Moscow State Pedagogical University
 
- 期: 卷 97, 编号 6 (2023)
- 页面: 812-820
- 栏目: PHYSICAL CHEMISTRY OF SOLUTIONS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.06.2023
- URL: https://cardiosomatics.ru/0044-4537/article/view/668719
- DOI: https://doi.org/10.31857/S0044453723060341
- EDN: https://elibrary.ru/KDJEZZ
- ID: 668719
如何引用文章
详细
The densities of binary and ternary mixtures of morpholine with dimethyl sulfoxide and N-methyl-2-pyrrolidone are experimentally studied at 293.15 K and atmospheric pressure, density deviations and excess molar volumes of mixtures are calculated from experimental data, concentration dependences for binary systems are described by the Redlich–Kister polynomial, and density isoline diagrams of the morpholine–dimethyl sulfoxide–N-methyl-2-pyrrolidone system are plotted.
作者简介
V. Zhuchkov
MIREA–Russian Technological University, Lomonosov Institute of Fine Chemical Technologies
														Email: raevalentina1@gmail.com
				                					                																			                												                								119048, Moscow, Russia						
V. Raeva
MIREA–Russian Technological University, Lomonosov Institute of Fine Chemical Technologies
														Email: raevalentina1@gmail.com
				                					                																			                												                								119048, Moscow, Russia						
A. Ul’yanova
Moscow State Pedagogical University
							编辑信件的主要联系方式.
							Email: raevalentina1@gmail.com
				                					                																			                												                								119435, Moscow, Russia						
参考
- Гайле А.А., Сомов В.В., Залищевский Г.Д. Морфолин и его производные. Получение, свойства и применение в качестве селективного растворителя. СПб.: Химиздат, 2007. 332 с.
- Marrufo B., Sanchotello M., Loras S. // Fluid Phase Equil. 2010. V. 296. № 2. P. 178. https://doi.org/10.1016/j.fluid.2010.04.008
- Coca J., Pis J.J. // J. Chem. Eng. Data. 1979. V. 24. № 2. P. 103. https://doi.org/10.1021/je60081a017
- Kozin V.G., Mukhamadiev A.A. // Russ. J. Appl. Chem. 2002. V. 75. № 7. P. 1061.https://doi.org/10.1023/A:1020791608247
- Козин В.Г., Мухамадиев А.А. // ЖПХ. 2001. Т.74. № 8. С. 1252.
- Parthipan G., Thenappan T. // J. Mol. Liq. 2008. V. 138. № 1–3. P. 20.https://doi.org/10.1016/j.molliq.2007.06.010
- Rama Rao G.V., Viswanatha Sarma A., Rambabu G. // IJPAP. 2004. V. 42. № 11. P. 820.
- Rama Rao G.V., Viswanatha Sarma A., Ramachandra D., Rambabu G. // Indian J. Chem. 2007. V. 46A. P. 1972.
- Venis A.R., Rajkumar X.R. // Orient. J. Chem. 2011. V. 27. № 1. P. 105.
- Makavana M., Sharma S. // J. Mol. Liq. 2016. V. 222. P. 535. https://doi.org/10.1016/j.molliq.2016.07.045
- Umasivakami K., Vaideeswaran S., Venis A.R. // J. Serb. Chem. Soc. 2018. V. 83. № 10. P. 1131. https://doi.org/10.2298/JSC170829056U
- Gil B.K., Sharma H., Rattan V.R. // Int. J. Chem. Mol. Eng. 2016. V. 10. № 3. P. 325.
- Sharma S., Makavana M. // Fluid Phase Equil. 2014. V. 375. P. 219.https://doi.org/10.1016/j.fluid.2014.05.008
- Awwad A.M., Allos E.I., Salman S.R. // J. Chem. Eng. Data. 1988. V. 33. № 3. P. 265. https://doi.org/10.1021/je00053a013
- Абрамович А.И., Ланшина Л.В. // Журн. физ. химии. 2010. Т. 84. № 7. С. 1269.
- Ланшина Л.В., Абрамович А.И. // Там же. 2007. Т. 81. № 2. С. 239.
- Minevich A., Marcus Y. // J. Chem. Eng. Data. 2003. V. 48. № 1. P. 208. https://doi.org/10.1021/je020191g
- Maham Y., Boivineau M., Mather A.E. // J. Chem. Thermodyn. 2001. V. 33. P. 1725. https://doi.org/10.1006/jcht.2001.0885
- Satei A., Azim Soltanabadi A. // J. Mol. Liq. 2022. V. 348. 118417. https://doi.org/10.1016/j.molliq.2021.118417
- Mirzaee R., Soltanabadi A., Ranjbar S., Fakhri Z. // Struct. Chem. 2021. V. 32. P. 2319. https://doi.org/10.1007/s11224-021-01808-9
- Kumari A., Aniya V., Rane N.V. et al. // Thermochim. Acta. 2017. V. 649. P. 41. https://doi.org/10.1016/j.tca.2016.12.010
- Park S.-J., Fischer K., Gmehling J. // J. Chem. Eng. Data. 1994. V. 39. № 4. P. 859. https://doi.org/10.1021/je00016a050
- Fakhri Z., Azad M. T. // J. Mol. Liq. 2020. V. 302. 112584. https://doi.org/10.1016/j.molliq.2020.112584
- Bala D., Gowrisankar M., Ramachandran D. // Int. J. Ambient Energy 1. 2020. P. 1. https://doi.org/10.1080/01430750.2020.1852112
- Козин В.Г., Мухамадиев А.А. // Нефтехимия. 2002. Т. 42. № 4. С. 311.
- Zhuchkov V.I., Raeva V.M., Frolkova A.K. // Chem. Data Col. 2022. V. 38. 100840. https://doi.org/10.1016/j.cdc.2022.100840
- Simoiu A.-M., Iacob A. // J. Therm. Anal. Calorim. 2012. V. 110. P. 329.https://doi.org/10.1007/s10973-012-2345-z
- Friedman H.B., Barnard A., Doe W.B. et al. // JACS. 1940. V. 62. № 9. P. 2366. https://doi.org/10.1021/ja01866a029
- Živkovíc N.V., Šerbanovíc S.S., Kijevčanin M.Lj., Živkovíc E.M. // J. Chem. Eng. Data. 2013. V. 58. № 12. P. 3332. https://doi.org/10.1021/je400486p
- García-Abuín A., Gomez-Díaz D., La Rubia M.D. et al. // J. Chem. Eng. Data. 2011. V. 56. № 6. P. 2904. https://doi.org/10.1021/je200121f
- García-Abuín A., Gomez-Díaz D., La Rubia M.D., Navaza J.M. // Ibid. 2011. V. 56. № 3. P. 646. https://doi.org/10.1021/je100967k
- López A.B., García-Abuín A., Gómez-Díaz D. et al. // J. Chem. Thermodyn. 2013. V. 61. P. 1. https://doi.org/10.1016/j.jct.2013.01.020
- Ciocirlan O., Iulian O. // J. Serb. Chem. Soc. 2009. V. 74. № 3. P. 317. https://doi.org/10.2298/JSC0903317C
- Harmandeep Singh Gill, Rattan V.K. // J. of Thermodynamics. 2014. № 3. Art. ID 607052. https://doi.org/10.1155/2014/607052
- Tsierkezos N.G., Kelarakis A.E., Palaiologou M.M. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 395. https://doi.org/10.1021/je990271t
- Ciocirlan O., Iulian O. // J. Serb. Chem. Soc. 2008. V. 73. № 1. P. 73. https://doi.org/10.2298/JSC0801073C
- Bala D., Gowrisankar M., Ramachandran D. et al. // Intern. J. of Ambient Energy. 2020. V. 41. https://doi.org/10.1080/01430750.2020.1852112
- Wang X., Yang F., Gao Y., Liu Z. // J. Chem. Thermodyn. 2013. V. 57. P. 145. https://doi.org/10.1016/j.jct.2012.08.021
- Ramos-Estrada M., López-Cortés I.Y., Iglesias-Silva G.A., Pérez-Villaseñor F. // J. Chem. Eng. Data. 2018. V. 63. P. 4425. https://doi.org/10.1021/acs.jced.8b00537
- Venis A.R., Rajkumar X.R. // Asian J. Chemistry. 2014. V. 26. № 15. P. 4711. https://doi.org/10.14233/ajchem.2014.16182
- Budeanu M.M., Dumitrescu V. // Appl. Sci. 2022. V. 12. P. 116. https://doi.org/10.3390/app12010116
- Терентьева В.Б., Пешнев Б.В., Николаев А.И. // Тонкие химические технологии. 2021. Т. 16. № 5. С. 390.
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					





