AACVD synthesis of bilayer thin-film ZnO/Cr₂O₃ nanocomposites for chemoresistive gas sensors
- Authors: Mokrushin A.S.1, Dmitrieva S.A.1,2, Gorban Y.M.1,2, Stroikova A.R.1,2, Simonenko N.P.1, Averin A.A.3, Simonenko E.P.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Mendeleev Russian University of Chemical Technology
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
 
- Issue: Vol 70, No 4 (2025)
- Pages: 606-614
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://cardiosomatics.ru/0044-457X/article/view/687079
- DOI: https://doi.org/10.31857/S0044457X25040147
- EDN: https://elibrary.ru/HPKLWZ
- ID: 687079
Cite item
Abstract
Using aerosol-assisted vapor deposition (AACVD), bilayer ZnO/Cr₂O₃ thin-film nanocomposites were prepared and validated using various physicochemical analysis techniques. The thermal behavior of precursors: zinc and chromium acetylacetonates was studied using TGA/DSC. The chemical composition of the obtained coatings was confirmed by EDX method, and the physical composition was confirmed by X-ray diffraction and Raman spectroscopy. The microstructural features were studied by SEM method. It was found that by varying the precursor concentration it is possible to change the morphology of the obtained coatings from an island structure to a continuous film. It is shown that ZnO/Cr₂O₃ bilayer films demonstrate a noticeable chemoresistive response in acetone detection.
Keywords
Full Text
 
												
	                        About the authors
A. S. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
S. A. Dmitrieva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991; Moscow, 125047						
Y. M. Gorban
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991; Moscow, 125047						
A. R. Stroikova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991; Moscow, 125047						
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
A. A. Averin
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119071						
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: artyom.nano@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
References
- Damianos D., Mouly J., Delbos P. Status of the MEMS industry 2021 //“Status of the MEMS industry” Yole development. – 2021.
- Deng Y. // Semiconducting Metal Oxides for Gas Sensing. Elsеvier, 2019. https://doi.org/10.1007/978-981-13-5853-1
- Seiyama T., Kagawa S. // Anal. Chem. 1966. V. 38. № 8. P. 1069.https://doi.org/10.1021/ac60240a031
- Abegunde O.O., Akinlabi E.T., Oladijo O.P. et al. // AIMS Mater. Sci. 2019. V. 6. № 2. P. 174.https://doi.org/10.3934/matersci.2019.2.174
- Sun L., Yuan G., Gao L. et al. // Nature Rev. Methods Primers. 2021. V. 1. № 1.https://doi.org/10.1038/s43586-020-00005-y
- Kuzminykh Y., Dabirian A., Reinke M. et al. // Surf. Coat. Technol. 2013. V. 230. P. 13.https://doi.org/10.1016/j.surfcoat.2013.06.059
- Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583.https://doi.org/10.1002/cvde.200600033
- Jeong S.Y., Kim J.S., Lee J.H. // Adv. Mater. 2020. V. 32. № 51. P. 2002075.https://doi.org/10.1002/adma.202002075
- Ahmad R., Majhi S.M., Zhang X. et al. // Adv. Colloid Interface Sci. 2019. V. 270. P. 1.https://doi.org/10.1016/j.cis.2019.05.006
- Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856.https://doi.org/10.1016/j.jallcom.2024.176856
- Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. Part A. P. 17600.https://doi.org/10.1016/j.ceramint.2023.02.126
- Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators, B: Chem. 2021. V. 336. P. 129729.https://doi.org/10.1016/j.snb.2021.129729
- Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 445. P. 1.https://doi.org/10.3390/bios13040445
- Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Ceram. Int. 2024. V. 50. № 6. P. 8777.https://doi.org/10.1016/j.ceramint.2023.12.194
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 725. P. 1.https://doi.org/10.3390/mi14040725
- Woo H.S., Na C.W., Kim I.D. et al. // Nanotechnology. 2012. V. 23. № 24. P. 245501.https://doi.org/10.1088/0957-4484/23/24/245501
- Jayababu N., Poloju M., Reddy M.V.R. // AIP Conf. Proc. 2019. V. 2082. № March. P. 3.https://doi.org/10.1063/1.5093843
- Park S., Sun G.J., Jin C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 4. P. 2805.https://doi.org/10.1021/acsami.5b11485
- Najafi V., Zolghadr S., Kimiagar S. // Optik. 2019. V. 182. P. 249.https://doi.org/10.1016/j.ijleo.2019.01.015
- Wang T. yang, Li Y. yuan, Li T. tian et al. // Solid State Ionics. 2018. V. 326. P. 173.https://doi.org/10.1016/j.ssi.2018.10.006
- Kamalianfar A., Naseri M.G., Jahromi S.P. // Chem. Phys. Lett. 2019. V. 732. P. 136648.https://doi.org/10.1016/j.cplett.2019.136648
- Selvaraj B., Karnam J.B., Rayappan J.B.B. // Ceram. Int. 2023. V. 49. № 23. P. 37106.https://doi.org/10.1016/j.ceramint.2023.08.308
- Al-Hardan N.H., Abdullah M.J., Aziz A.A. // Appl. Surf. Sci. 2013. V. 270. P. 480.https://doi.org/10.1016/j.apsusc.2013.01.064
- Abdul Kareem S.M., Suhail M.H., Adehmash I.K. // Iraqi J. Sci. 2021. V. 62. № 7. P. 2176.https://doi.org/10.24996/ijs.2021.62.7.7
- Vallejos S., Pizúrová N., Gràcia I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335.https://doi.org/10.1021/acsami.6b12992
- Roy A., Sood A.K. // Pramana: J. Phys. 1995. V. 44. № 3. P. 201.https://doi.org/10.1007/BF02848471
- Šćepanović M., Grujić-Brojčin M., Vojisavljević K. et al. // J. Raman Spectroscopy. 2010. V. 41. № 9. P. 914.https://doi.org/10.1002/jrs.2546
- Gomes A.S.O., Yaghini N., Martinelli A. et al. // J. Raman Spectroscopy. 2017. V. 48. № 10. P. 1256.https://doi.org/10.1002/jrs.5198
- Chen M., Wang Z., Han D. et al. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763.https://doi.org/10.1021/jp201816d
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





