Hydrophilic colloidal CdS particles: synthesis, stabilization mechanism, spectral, optical and photocatalytic properties
- Autores: Kozhevnikova N.S.1,2, Baklanova I.V.1, Enyashin A.N.1, Tyutyunnik A.P.1, Ushkov A.A.2
-
Afiliações:
- Institute of Solid State Chemistry UB RAS
- Ural Federal University
- Edição: Volume 70, Nº 5 (2025)
- Páginas: 630-642
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cardiosomatics.ru/0044-457X/article/view/685444
- DOI: https://doi.org/10.31857/S0044457X25050022
- EDN: https://elibrary.ru/HXWTZP
- ID: 685444
Citar
Resumo
Hydrophilic colloidal particles of cadmium sulfide CdS were obtained by chemical condensation. To form a hydrophilic shell an approach based on the formation of a micelle-like structure around CdS nanoparticles was used. The CdS micelle were formed due to the formation of stable complexonates with ethylenediaminetetraacetic acid anions by surface cadmium atoms. The mechanism of aggregation stability of CdS nanoparticles in aqueous solutions was studied. Optical, spectral and photocatalytic properties of both nanostructured powders agglomerated from hydrophobic CdS nanoparticles and isolated hydrophilic CdS nanoparticles in a colloidal solution were investigated.
Texto integral

Sobre autores
N. Kozhevnikova
Institute of Solid State Chemistry UB RAS; Ural Federal University
Autor responsável pela correspondência
Email: kozhevnikova@ihim.uran.ru
Rússia, Ekaterinburg, 620990; Ekaterinburg, 620002
I. Baklanova
Institute of Solid State Chemistry UB RAS
Email: kozhevnikova@ihim.uran.ru
Rússia, Ekaterinburg, 620990
A. Enyashin
Institute of Solid State Chemistry UB RAS
Email: kozhevnikova@ihim.uran.ru
Rússia, Ekaterinburg, 620990
A. Tyutyunnik
Institute of Solid State Chemistry UB RAS
Email: kozhevnikova@ihim.uran.ru
Rússia, Ekaterinburg, 620990
A. Ushkov
Ural Federal University
Email: kozhevnikova@ihim.uran.ru
Rússia, Ekaterinburg, 620002
Bibliografia
- Бричкин С.Б., Разумов В.Ф. // Успехи химии. 2016. Т. 85. № 12. С. 1297. https://doi.org/10.1070/RCR4656
- Pham D.T., Quan T., Mei S. et al. // Curr. Opin. Green Sust. Chem. 2022. V. 34. P. 100596. https://doi.org/10.1016/j.cogsc.2022.100596
- Mamiyev Z., Balayeva N.O. // Catalysts. 2022. V. 12. P. 1316. https://doi.org/10.3390/catal12111316
- Li Q., Li X., Yu J. // Int. Sci. Techn. 2020. V. 31. P. 313. https://doi.org/10.1016/B978-0-08-102890-2.00010-5
- Cheng L., Xiang Q., Liao Y. et al. // Energy Environ. Sci. 2018. V. 11. P. 1362. https://doi.org/10.1039/C7EE03640J
- Мусихин С.Ф., Александрова О.А., Лучинин В.В. и др. // Биотехносфера. 2012. № 5-6. С. 40. https://cyberleninka.ru/article/n/poluprovodnikovye-nanokristally-v-biomeditsinskih-issledovaniyah/viewer
- Han K., Yoon S., Chung W.J. // Int. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 103. https://doi.org/10.1111/ijag.12115
- Смагин В.П., Давыдов Д.А., Унжакова Н.М. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1734. https://doi.org/10.7868/S0044457X15120247
- Сумм Б.Д., Иванова Н.И. // Успехи химии. 2000. Т. 69. № 11. С. 995. https://doi.org/10.1070/RC2000v069n11ABEH000616
- Peyre V., Spalla O., Belloni L. et al. // J. Coll. Inter. Sci. 1997. V. 187. № 1. P. 184. https://doi.org/10.1006/jcis.1996.4692
- Singh N.B., Devi T.C., Singh T.D. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1690. https://doi.org/10.1134/S0036023623601782
- Кожевникова Н.С., Ворох А.С., Ремпель А.А. // Журн. общей химии. 2010. Т. 80. № 2. С. 365. https://doi.org/10.1134/S1070363210030035
- Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
- Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. P. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
- García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/5.0005077
- Zelaya-Angel O., de L. Castillo-Alvarado F., Avendailo-Lopez J. et al. // Solid State Commun. 1997. V. 104. № 3. P. 161. https://doi.org/10.1016/S0038-1098(97)00080-X
- Rossetti R., Nakahara S., Brus L.E. // J. Chem. Phys. 1983. V. 79. № 2. P. 1086. https://doi.org/10.1063/1.445834
- Nozik A.J., Williams F., Nenadovic M.T. et al. // J. Phys. Chem. 1985. V. 89. № 3. P. 397. https://doi.org/10.1021/j100249a004
- Weller H., Koch U., Gutierrez M. et al. // Phys. Chem. 1984. V. 88. P. 649. https://doi.org/10.1002/bbpc.19840880715
- Fojtik A., Weller H., Koch U. et al. // Phys. Chem. 1984. V. 88. № 10. P. 969. https://doi.org/10.1002/bbpc.19840881010
- Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
- Клюев В.Г., Фам Тхи Хан Мьен, Бездетко Ю.С. // Конденсированные среды и межфазные границы. 2014. T. 16. № 1. C. 27. https://journals.vsu.ru/kcmf/article/view/800
- Davydyuk H.Ye., Kevshyn A.H., Bozhko V.V. et al. // Semiconductors. 2009. V. 43. № 11. P. 1401. https://doi.org/10.1134/S1063782609110013
- Kulp B.A. // Phys. Rev. 1962. V. 125. P. 1865. https://doi.org/10.1103/PhysRev.125.1865
- Ramsden J.J., Grätzel M. // J. Chem. Soc. Faraday Trans. 1984. V. 80. № 1. P. 919. https://doi.org/10.1039/F19848000919
- Morozova N.K., Danilevich N.D., Kanakhin A.A. // Phys. Status Solidi C. 2010. V. 7. № 6. P. 1501. https://doi.org/10.1002/pssc.200983229
- Morozova N.K. New in the optics of II-VI-O compounds (New possibilities of optical diagnostics of single-crystal systems with defects). Riga: LAP LAMBERT Academic Publishing, 2021. 214 p.
- Морозова Н.К., Данилевич Н.Д. // Физика и техника полупроводников. 2010. Т. 44. № 4. С. 458. https://doi.org/10.1134/S1063782610040056
- Пугачевский М.А., Мамонтов В.А., Николаева С.Н. и др. // Изв. Юго-Западного гос. ун-та. Сер. Техника и технологии. 2021. Т. 11. № 2. С. 104.
- Дятлова Н.М., Темкина В.Я., Колпакова И.Д. Комплексоны. М.: Химия, 1970. 416 c.
- Nowack B. // Environ. Sci. Technol. 2002. V. 36. № 19. P. 4009. https://doi.org/10.1021/es025683s
Arquivos suplementares
