Synthesis, structure, and thermal expansion of BiCr2(PO4)3, SbCr2(PO4)3 and Bi1-xSbхCr2(PO4)3 solid solutions
- Autores: Pet'kov V.I1, Lavrenov D.A1, Asabina E.A1
- 
							Afiliações: 
							- N. I. Lobachevsky National Research Nizhny Novgorod State University
 
- Edição: Volume 93, Nº 3 (2023)
- Páginas: 475-482
- Seção: Articles
- URL: https://cardiosomatics.ru/0044-460X/article/view/667095
- DOI: https://doi.org/10.31857/S0044460X23030150
- EDN: https://elibrary.ru/QFOYZH
- ID: 667095
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The manifestations of the Bi1- x Sb x Cr2(PO4)3 system with the α-CaMg2(SO4)3 structure were obtained and characterized by the evaporation of salt solutions with heat treatment. Refinement of the Rietveld method for the structure of BiCr2(PO4)3 ( x = 0) and SbCr2(PO4)3 ( x = 1) showed that the [Cr2(PO4)3]3∞ framework is formed by CrO6 octahedra doubled by faces, PO4 tetrahedra are between the dependences, attached to the octahedrons by oxygen vertices, the voids of the framework are populated by six-coordinated bismuth or antimony atoms. By varying the composition of the Bi1- x Sb x Cr2(PO4)3 solid solution everywhere, it is possible to obtain materials with low thermal expansion coefficients: 0.5×10-6 ≤ α av  ≤ 1.9×10-6 °C-1.
			                Palavras-chave
Sobre autores
V. Pet'kov
N. I. Lobachevsky National Research Nizhny Novgorod State University
														Email: petkov@inbox.ru
				                					                																			                												                														
D. Lavrenov
N. I. Lobachevsky National Research Nizhny Novgorod State University
E. Asabina
N. I. Lobachevsky National Research Nizhny Novgorod State University
Bibliografia
- Pet'kov V.I., Asabina E.A., Sukhanov M.V., Schelokov I.A., Shipilov A.S., Alekseev A.A. // Chem. Eng. Trans. 2015. Vol. 43. P. 1825. doi: 10.3303/CET1543305
- Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. // Inorg. Chem. 2020. Vol. 59. P. 13245. doi: 10.1021/acs.inorgchem.0c01597
- Петьков В.И., Асабина Е.А., Лукутцов А.А., Корчемкин И.В., Алексеев А.А., Демарин В.Т. // Радиохимия. 2015. Т. 57. № 6. С. 540
- Pet'kov V.I., Asabina E.A., Lukuttsov A.A., Korchemkin I.V., Alekseev A.A., Demarin V.T. // Radiochemistry. 2015. Vol. 57. N 6. P. 632. doi: 10.1134/S1066362215060119
- Abhilash P., Sebastian M.T., Surendran K.P. // J. Eur. Ceram. Soc. 2016. Vol. 36. № 8. P. 1939. doi: 10.1016/j.jeurceramsoc.2016.02.019
- Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. // Кристаллография. 2020. Т. 65. № 5. С. 745. doi: 10.31857/S0023476120050173
- Pet'kov V.I., Somov N.V., Lavrenov D.A., Sukhanov M.V., Fukina D.G. // Cryst. Rep. 2020. Vol. 65. N 5. P. 716. doi: 10.1134/S106377452005017X
- Chong M.K., Zainuddin Z., Omar F.S., Hj J.M.H. // Ceram. Int. 2022. Vol. 48. N 15. P. 22147. doi: 10.1016/j.ceramint.2022.04.202
- Moussadik A., Halim M., Arsalane S., Kacimi M., Hamidi A.E., Tielens F. // Mater. Res. Bull. 2022. Vol. 150. P. 111764. doi: 10.1016/j.materresbull.2022.111764
- Navarrete-Segado P., Grossin D., Frances C., Tourbin M., Tenailleau C., Duployer B. // Addit. Manuf. 2022. Vol. 50. P. 102542. doi: 10.1016/j.addma.2021.102542
- Liu F., Deng D., Wu M., Chen B., Zhou L., Xu S. // J. Alloys Compd. 2021. Vol. 865. P. 158820. doi: 10.1016/j.jallcom.2021.158820
- Shen L., Deng S., Jiang R., Liu G., Yang J., Yao X. // Energy Storage Mater. 2022. Vol. 46. P. 175. doi: 10.1016/j.ensm.2022.01.010
- Oda K., Saitoh H., Hoaki Y., Shimoda H., Hirao T., Ichiyoshi W., Shimizu Y. // Solid State Ion. 2020. Vol. 346. P. 115212. doi: 10.1016/j.ssi.2019.115212
- Zhang Y., Huazhi G., Shuang Y., Ao H. // J. Magn. Magn. Mater. 2020. Vol. 506. P. 166802. doi: 10.1016/j.jmmm.2020.166802
- Сафронова Т.В. // Неорг. матер. 2021. T. 57. № 5. С. 467. doi: 10.31857/S0002337X21050067
- Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N 5. P. 443. doi: 10.1134/S002016852105006X
- Wang J., Wei Y., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48. № 9. P. 12772. doi: 10.1016/j.ceramint.2022.01.147
- Ramya R., Buvaneswari G. // J. Nucl. Mater. 2022. Vol. 558. P. 153388. doi: 10.1016/j.jnucmat.2021.153388
- Bohre A., Avasthi K., Pet'kov V.I. // J. Ind. Eng. Chem. 2017. Vol. 50. P. 1. doi: 10.1016/j.jiec.2017.01.032
- Pilonen P.C., Friis H., Rowe R., Poirier G. // Canad. Mineral. 2020. Vol. 58. P. 1. doi: 10.3749/canmin.2000044
- Yaroslavtsev A.B., Stenina I.A. // Russ. J. Inorg. Chem. 2006. Vol. 51. Suppl. P. 97.
- Masquelier C.W.C., Rodrıguez-Carvajal J., Gaubicher J., Nazar L. // Chem. Mater. 2000. Vol. 12. № 2. P. 525. doi: 10.1021/cm991138n
- Weil M. // Cryst. Res. Technol. 2007. Vol. 42. № 11. P. 1058. doi: 10.1002/crat.200710975
- Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. // Canad. Mineral. 2010. Vol. 48. № 6. P. 1469. doi: 10.3749/canmin.48.5.1469
- Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПбГУ, 2011. Ч. 1.
- Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi: 10.1007/s10973-020-09370-y
- Rietveld H.M. // Acta Crystallogr. 1967. Vol. 22. Pt 1. P. 151. doi: 10.1107/S0365110X67000234
- Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994. Vol. 102. P. 401. doi: 10.2109/jcersj.102.401
- Izumi F. // The Rietveld Method. New York: Oxford University Press, 1993. 298 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
