EEG-characteristics in rest and parameters of event related potentials when arythmetic problems solving in primary school children with different levels of mental arithmetic calculation skills
- Autores: Nagornova Z.V.1, Trifonov M.I.1, Panasevich E.A.1, Rozhkov V.P.1, Galkin V.A.1, Grokhotova A.V.1, Zavodova E.M.1, Soroko S.I.1, Shemyakina N.V.1
-
Afiliações:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
- Edição: Volume 51, Nº 4 (2025)
- Páginas: 50-68
- Seção: Articles
- URL: https://cardiosomatics.ru/0131-1646/article/view/689896
- DOI: https://doi.org/10.31857/S0131164625040044
- EDN: https://elibrary.ru/SQEBXA
- ID: 689896
Citar
Texto integral



Resumo
The EEG/ERP study involved 8–9 year old schoolchildren (24 participants). The participants performed arithmetic tasks in a delayed response verification paradigm: first a problem was presented, then an answer, to which they had to react by pressing a button if it was correct and skip if the answer was incorrect. Differences in the parameters of event related potentials (ERP) were revealed between the group of schoolchildren who made more than 50% of errors (8 people) – children with mental calculation difficulties – and the group of schoolchildren who made less than 20% of errors (13 people) – children with normal formed mental calculation skills. In the group of well-counting schoolchildren (in comparison with poorly counting), when presented with a correct answer, a smaller latency of the P2 component (on the time interval of 140–200 ms) in the central and frontal cortical areas and a larger amplitude of the positive component related to P3 (292–616 ms) with a maximum of differences in the central, parietal, and temporal areas of the right hemisphere were revealed. When an incorrect answer was presented – in the group of well-counting schoolchildren there was a large amplitude of positive components in the wide time interval 272–1232 ms – in the central and parietal cortical areas with a maximum in the right hemisphere. The revealed differences in ERP amplitudes affect both earlier perceptual components (in particular, P2) and later semantic components of ERP, reflecting different stages of information processing and decision making. According to the data of the resting state EEG analysis, the spectral power in θ-, α1- and β1-bands of the EEG, as well as the value of the integral parameter of spatial connectivity calculated from the structural function of the multichannel EEG, was higher in students with mental calculation difficulties than in students with formed mental calculation skills. Taking into account the age dynamics of the analyzed EEG parameters, these differences may characterize a slower maturation of the brain regulatory mechanisms in children with mental calculation difficulties.
Palavras-chave
Texto integral

Sobre autores
Zh. Nagornova
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Autor responsável pela correspondência
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
M. Trifonov
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
E. Panasevich
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
V. Rozhkov
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
V. Galkin
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
A. Grokhotova
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
E. Zavodova
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
S. Soroko
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
N. Shemyakina
Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS
Email: nagornova_zh@mail.ru
Rússia, St. Petersburg
Bibliografia
- Krutetsky V.A. [Psychology of mathematical skills of schoolchildren]. Ed. Chuprikova N.I. Moscow: Institute of Practical Psychology, 1998. 416 p.
- O'Boyle M.W., Cunnington R., Silk T.J. et al. Mathematically gifted male adolescents activate a unique brain network during mental rotation // Brain Res. Cogn. Brain Res. 2005. V. 25. № 2. P. 583.
- Leikin M., Waisman I., Leikin R. How brain research can contribute to the evaluation of mathematical giftedness // Psychological Test and Assessment Modeling. 2013. V. 55. № 4. P. 415.
- Zhang L., Gan J.Q., Wang H. Neurocognitive mechanisms of mathematical giftedness: A literature review // Appl. Neuropsychol. Child. 2017. V. 6. № 1. P. 79.
- Mikheev I., Steiner H., Martynova O. Detecting cognitive traits and occupational proficiency using EEG and statistical inference // Sci. Rep. 2024. V. 14. № 1. P. 5605.
- Gashaj V., Trninić D., Formaz C. et al. Bridging cognitive neuroscience and education: Insights from EEG recording during mathematical proof evaluation // Trends Neurosci. Educ. 2024. V. 35. P. 100226.
- Micev R., Rogelj P. Exploring mathematical decision-making through EEG analysis / Proc. of the 10th Student Computing Research Symposium (SCORES’24). Maribor. Slovenia, October 3, 2024. P. 69.
- Gebuis T., Herfs I.K., Kenemans J.L. The development of automated access to symbolic and non-symbolic number knowledge in children: An ERP study // Eur. J. Neurosci. 2009. V. 30. № 10. P. 1999.
- Chen C.C., Berteletti I., Hyde D.C. Neural evidence of core foundations and conceptual change in preschool numeracy // Dev. Sci. 2024. V. 27. № 6. P. e13556.
- Dehaene S., Piazza M., Pinel P., Cohen L. Three parietal circuits for number processing // Cogn. Neuropsychol. 2003. V. 20. № 3. P. 487.
- Vanbinst K., De Smedt B. Individual differences in children’s mathematics achievement: The roles of symbolic numerical magnitude processing and domain-general cognitive functions // Prog. Brain Res. 2016. V. 227. P. 105.
- Nagornova Z.V., Shemyakina N.V., Soroko S.I. Cognitive event-related potentials in solving arithmetic tasks by adolescents living in different regions of Northern Russia // Human Physiology. 2020. V. 46. № 3. P. 257.
- Grenier A.E., Dickson D.S., Sparks C.S., Wicha N.Y.Y. Meaning to multiply: Electrophysiological evidence that children and adults treat multiplication facts differently // Dev. Cogn. Neurosci. 2020. V. 46. P. 100873.
- Cárdenas S.Y., Silva-Pereyra J., Prieto-Corona B. et al. Arithmetic processing in children with dyscalculia: An event-related potential study // PeerJ. 2021. V. 9. P. e10489.
- Berteletti I., Kimbley S.E., Sullivan S.J. et al. Different language modalities yet similar cognitive processes in arithmetic fact retrieval // Brain Sci. 2022. V. 12. № 2. P. 145.
- Kovaleva G.S., Danilenko O.V., Ermakova I.V. et al. [About first-graders: Results of research on the readiness of first-graders to study at school] // Municipal Education: Innovation and Experiment. 2012. № 5. P. 30.
- Kardanova E.Y., Ivanova A.E., Sergomanov P.A. et al. [Generalized types of first-graders' development at the entrance to school. Based on the materials of the iPIPS study] // Educational Studies Moscow. 2018. № 1. P. 8.
- Bull R., Scerif G. Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory // Dev. Neuropsychol. 2001. V. 19. № 3. P. 273.
- Bezrukikh M.M., Machinskaya R.I., Farber D.A. Structural and functional organization of a developing brain and formation of cognitive functions in child ontogeny // Human Physiology. 2009. V. 35. № 6. P. 658.
- Hillman C.H., Pontifex M.B., Motl R.W. From ERPs to academics // Dev. Cogn. Neurosci. 2012. V. 2. P. 90.
- Robinson K.M., Arbuthnott K.D., Rose D. et al. Stability and change in children's division strategies // J. Exp. Child. Psychol. 2006. V. 93. № 3. P. 224.
- Roussel J.-L., Fayol M., Barrouillet P. Procedural vs. direct retrieval strategies in arithmetic: A comparison between additive and multiplicative problem solving // Eur. J. Cogn. Psychol. 2002. V. 14. № 1. P. 61.
- Thevenot C., Barrouillet P., Castel C., Uittenhove K. Ten-year-old children strategies in mental addition: A counting model account // Cognition. 2016. V. 146. P. 48.
- Semenova O.A., Machinskaya R.I., Lomakin D.I. The influence of the functional state of brain regulatory systems on the programming, selective regulation and control of cognitive activity in children: I. Neuropsychological and EEG analysis of age-related changes in brain regulatory functions in children aged 9–12 years // Human Physiology. 2015. V. 41. № 4. P. 345.
- Vigário R.N. Extraction of ocular artefacts from EEG using independent component analysis // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
- Jung T.P., Makeig S., Westerfield M. et al. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects // Clin. Neurophysiol. 2000. V. 111. № 10. P. 1745.
- Tereshchenko E.P., Ponomarev V.A., Kropotov Yu.D., Müller A. Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials // Human Physiology. 2009. V. 35. № 2. P. 241.
- Pernet C.R., Latinus M., Nichols T.E., Rousselet G.A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study // J. Neuosci. Methods. 2015. V. 250. P. 85.
- Nikishena I.S., Ponomarev V.A., Kropotov J.D. Event-related potentials of the human brain during the comparison of visual stimuli // Human Physiology. 2023. V. 49. № 3. P. 264.
- Handbook of electroencephalography and clinical neurophysiology: Methods of analysis of brain and magnetic signals. Eds. Gevins A.S., Remond A. Elsevier Science Ltd. Amsterdam, The Netherlands, 1987. 683 p.
- Trifonov M.I., Panasevich E.A. Prediction of successful personal cognitive performance based on integrated characteristics of multichannel EEG // Human Physiology. 2018. V. 44. № 2. P. 208.
- Rozhkov V.P., Trifonov M.I., Soroko S.I. Control the functional state of the brain based on the dynamics of integral parameters of multichannel EEG in human under acute hypoxia // Human Physiology. 2021. V. 47. № 1. P. 1.
- Huynh H., Feldt L.S. Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs // J. Educ. Stat. 1976. V. 1. P. 69.
- Dickson D.S., Cerda V.R., Beavers R.N. et al. When 2 × 4 is meaningful: The N400 and P300 reveal operand format effects in multiplication verification // Psychophysiology. 2018. V. 55. № 11. P. e13212.
- Dickson D.S., Wicha N.Y.Y. P300 amplitude and latency reflect arithmetic skill: An ERP study of the problem size effect // Biol. Psychol. 2019. V. 148. P. 107745.
- Jasinski E.C., Coch D. ERPs across arithmetic operations in a delayed answer verification task // Psychophysiology. 2012. V. 49. № 7. P. 943.
- Suárez-Pellicioni M., Núñez-Peña M.I., Colomé A. Mathematical anxiety effects on simple arithmetic processing efficiency: An event-related potential study // Biol. Psychol. 2013. V. 94. № 3. P. 517.
- Zhou X., Chen C., Dong Q. et al. Event-related potentials of single-digit addition, subtraction, and multiplication // Neuropsychologia. 2006. V. 44. № 12. P. 2500.
- Niedeggen M., Rösler F. N400 effects reflect activation spread during retrieval of arithmetic facts // Psychological Science. 1999. V. 10. № 3. P. 271.
- Niedeggen M., Rösler F., Jost K. Processing of incongruous mental calculation problems: Evidence for an arithmetic N400 effect // Psychophysiology. 1999. V. 36. № 3. P. 307.
- Van Beek L., Ghesquièr P., De Smedt B., Lagae L. The arithmetic problem size effect in children: An event-related potential study // Front. Hum. Neurosci. 2014. V. 25. № 8. P. 756.
- Kutas M., Federmeier K.D. Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP) // Annu. Rev. Psychol. 2011. V. 62. P. 621.
- Hoyniak C. Changes in the NoGo N2 event-related potential component across childhood: A systematic review and meta-analysis // Dev. Neuropsychol. 2017. V. 42. № 1. P. 1.
- Friederici A.D. Neurophysiological aspects of language processing // Clin. Neurosci. 1997. V. 4. № 2. P. 64.
- Megías P., Macizo P. Simple arithmetic: Electrophy-siological evidence of coactivation and selection of arithmetic facts // Exp. Brain. Res. 2016. V. 234. № 11. P. 3305.
- Wongupparaj P., Sumich A., Wickens M. et al. Individual differences in working memory and general intelligence indexed by P200 and P300: A latent variable model // Biol. Psychol. 2018. V. 139. P. 96.
- Dickson D.S., Grenier A.E., Obinyan B.O. Wicha N.Y.Y. When multiplying is meaningful in memory: Electrophysiological signature of the problem size effect in children // J. Exp. Child. Psychol. 2022. V. 219. P. 105399.
- Duan X., Shi J., Wu J. et al. Electrophysiological correlates for response inhibition in intellectually gifted children: A Go/NoGo study // Neurosci. Lett. 2009. V. 457. № 1. P. 45.
- Sokolova L.S., Machinskaya R.I. Formation of the functional organization of the cerebral cortex at rest in young schoolchildren varying in the maturity of cerebral regulatory systems: I. Analysis of EEG spectral characteristics in the state of rest // Human Physiology. 2006. V. 32. № 5. P. 499.
- Niedermeyer E., Lopes da Silva F.H. Electroencepha-lography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 2005. 1309 p.
- Eeg-Olofsson O. The development of the electroencephalogram in normal children and adolescents from the age of 1 through 21 years // Acta Paediat. Scand. 1970. V. 208. P. 1.
- Freschl J., Azizi L.A., Balboa L. et al. The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis // Dev. Cogn. Neurosci. 2022. V. 57. P. 101146.
- Whitford T.J., Rennie C.J., Grieve S.M. et al. Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology // Hum. Brain Mapp. 2007. V. 28. № 3. P. 228.
- Gasser T., Verleger R., Bacher P., Sroka L. Development of the EEG of school-age children and adolescents: I, analysis of band power // Electroenceph. Clin. Neurophysiol. 1988. V. 69. № 2. P. 91.
- Alferova V.V., Farber D.A. [Reflection of age-specific features of the functional organization of the brain in the resting electroencephalogram / Structural and functional organization of the developing brain] // Eds. Farber D.A. et al. L.: Nauka, 1990. P. 45.
- Gorbachevskaya N.L., Sorokin A.B., Danilina K.K. [Age-related changes of neurophysiological characteristics of children in health and mental retardation syndrome, linked to fragile X chromosome (FRAXA)] // Psychological Science and Education. 2014. V. 19. № 4. P. 36.
- Kozhushko N.Y., Ponomarev V.A., Matveev Y.K., Evdokimov S.A. Developmental features of the formation of the brain's bioelectrical activity in children with remote consequences of a perinatal lesion of the CNS: II. EEG typology in health and mental disorders // Human Physiology. 2011. V. 37. № 3. P. 271.
- Komkova, Y.N., Sugrobova, G.A., Bezrukikh, M.M. EEG Analysis of the functional state of the brain in 5- to 7-years-old children // J. Evol. Biochem. Phys. 2023. V. 59. P. 1303.
- Machinskaya R.I., Kurgansky A.V., Lomakin D.I. Age-related trends in functional organization of cortical parts of regulatory brain systems in adolescents: An analysis of resting-state networks in the EEG source space // Human Physiology. 2019. V. 45. № 5. P. 461.
- Machinskaya R.I., Krupskaya E.V. EEG Analysis of the functional state of deep regulatory structures of the brain in hyperactive seven- to eight-year-old children // Human Physiology. 2001. V. 27. № 3. P. 368.
- Trifonov M. The structure function as new integral measure of spatial and temporal properties of multi-channel EEG // Brain Inform. 2016. V. 3. № 4. P. 211.
- Tsitseroshin M.N., Shepovalnikov A.N. [Becoming an integrative function of the brain]. Ed. Acad. Bekhtereva N.P. SPb.: Nauka, 2009. 249 p.
- Livanov M.N. [Spatial organization of brain processes]. Moscow: Nauka, 1972. 181 p.
- Babiloni C., Barry R. J., Basar E. et al. International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies // Clin. Neurophysiol. 2020. V. 131. № 1. P. 285.
- O’Neill G.C., Tewarie P., Vidaurre D. et al. Dynamics of large-scale electrophysiological networks: A technical review // Neuroimage. 2018. V. 180. P. 559.
- Rozhkov V.P., Trifonov M.I., Soroko S.I. [CNS Maturation Process in Children and Adolescents in the Northern Region of the Russian Federation and Its Reflection in the Dynamics of Integral EEG Parameters] // Neurosci. Behav. Physi. 2022. V. 52. P. 383.
- Soroko S.I., Bekshaev S.S., Rozhkov V.P. [EEG correlates of geno-phenotypical features of the brain development in children of the native and newcomers' population of the Russian North-East] // Ross. Fiziol. Zh. Im I.M. Sechenova. 2012. V. 98. № 1. P. 3.
- Machinskaya R.I., Sokolova L.S., Krupskaya E.V. Formation of the functional organization of the cerebral cortex at rest in young schoolchildren varying in the maturity of cerebral regulatory systems: II. Analysis of EEG α-rhythm coherence // Human Physiology. 2007. V. 33. № 2. P. 129.
- Gmehlin D., Thomas C., Weisbrod M. et al. Development of brain synchronization within school-age–individual analysis of resting (α) coherence in a longitudinal data set // Clin. Neurophysiol. 2011. V. 122. № 10. P. 1973.
Arquivos suplementares
