Влияние физической нагрузки на уровень хронического воспаления в норме и при неинфекционных заболеваниях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данном обзоре рассматривается влияние физической нагрузки на уровень системного воспаления. Отдельно рассмотрено влияние умеренных постоянных тренировок на участников гуморального иммунитета и клеточного иммунитета. Обсуждаются последние данные о молекулярных механизмах этого влияния, такие как выделяемые скелетными мышцами миокины и выделяемые адипоцитами адипокины. Приводятся клинические данные о влиянии умеренных физических нагрузок на распространенные заболевания — сердечно-сосудистые, диабет, рак, болезни Альцгеймера и другие.

Полный текст

Доступ закрыт

Об авторах

Н. В. Пахомов

ФГБОУ ВО Череповецкий государственный университет

Email: dkostchsu@yandex.ru
Россия, Череповец

Д. С. Костюнина

ФГБОУ ВО Череповецкий государственный университет

Автор, ответственный за переписку.
Email: dkostchsu@yandex.ru
Россия, Череповец

А. А. Артеменков

ФГБОУ ВО Череповецкий государственный университет

Email: dkostchsu@yandex.ru
Россия, Череповец

Список литературы

  1. Kim M., Sung J., Jin M. et al. Impact of Physical Activity on All-Cause Mortality According to Specific Cardiovascular Disease // Front. Cardiovasc. Med. 2022. V. 9. P. 811058.
  2. Zhao M., Veeranki S.P., Magnussen C.G., Xi B. Recommended physical activity and all cause and cause specific mortality in US adults : prospective cohort study // BMJ. 2020. V. 370. P. m2031.
  3. Lee D.H., Rezende L.F.M., Joh H. et al. Mortality: A Prospective Cohort of US Adults // Circulation. 2022. V. 146. № 7. P. 523.
  4. Давлетьярова К.В., Капилевич Л.В., Солтанова В.Л. и др. Адаптационные возможности организма студентов, занимающихся лечебной физической культурой // Бюллетень сибирской медицины. 2011. № 3. С. 116.
  5. Bonaccio M., Castelnuovo A.Di, Pounis G. et al. A score of low-grade inflammation and risk of mortality: prospective findings from the Moli-sani study // Haematologica. 2016. V. 101. № 11. P. 1434.
  6. Bo W., Zhou S., Meng J., Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic // Front. Mol. Neurosci. 2021. V. 14. P. 785214.
  7. Rönnbäck C., Hansson E. The Importance and Control of Low-Grade Inflammation Due to Damage of Cellular Barrier Systems That May Lead to Systemic Inflammation // Front. Neurol. 2019. V. 10. P. 533.
  8. Niu Y., Bai N., Ma Y. et al. Safety and efficacy of anti - inflammatory therapy in patients with coronary artery disease: a systematic review and meta-analysis // BMC Cardiovasc. Disord. 2022. V. 22. № 1. P. 84.
  9. Pollack R., Donath M., Leroith D., Leibowitz G. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications // Diabetes Care. 2016. V. 39. P. S244.
  10. Mantovani A., Garlanda C. Humoral Innate Immunity and Acute-Phase Proteins // N. Engl. J. Med. 2023. V. 388. № 5. P. 439.
  11. Peake J.M., Gatta Della P., Suzuki K., Nieman D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects // Exerc. Immunol. Rev. 2015. V. 21. P. 8.
  12. Steensberg A., van Hall G., Osada T. et al. Physical exercise induces the release of a cascade of cytokines // J. Physiol. 2000. V. 529. № 1. P. 237.
  13. Капилевич Л.В., Захарова А.Н., Кабачкова А.В. и др. Содержание миокинов в плазме крови после физических нагрузок различного характера у спортсменов и нетренированных лиц // Физиология человека. 2017. Т. 43. № 3. P. 87.
  14. Nieman D.C., Henson D.A., Davis J.M. et al. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA // J. Appl. Physiol. 2007. V. 103. № 5. P. 1728.
  15. Cabral-Santos C., de Lima Junior E.A., Fernandes I.M. da C. et al. Interleukin-10 responses from acute exercise in healthy subjects: A systematic review // J. Cell. Physiol. 2019. V. 234. № 7. P. 9956.
  16. Hamer M., Sabia S., Batty G.D. et al. Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study // Circulation. 2012. V. 126. № 8. P. 928.
  17. Elhakeem A., Cooper R., Whincup P. et al. Physical activity, sedentary time, and cardiovascular disease biomarkers at age 60 to 64 years // J. Am. Heart Assoc. 2018. V. 7. № 16. P. e007459.
  18. Morettini M., Storm F., Sacchetti M. et al. Effects of walking on low-grade inflammation and their implications for Type 2 Diabetes // Prev. Med. Rep. 2015. V. 2. P. 538.
  19. Hayashino Y., Jackson J.L., Hirata T. et al. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials // Metabolism. 2014. V. 63. № 3. P. 431.
  20. March D.S., Lai K.-B., Neal T. et al. Circulating endotoxin and inflammation: associations with fitness, physical activity and the effect of a 6-month programme of cycling exercise during haemodialysis // Nephrol. Dial. Transplant. 2022. V. 37. № 2. P. 366.
  21. Smart N.A., Larsen A.I., Le Maitre J.P., Ferraz A.S. Effect of exercise training on interleukin-6, tumour necrosis factor alpha and functional capacity in heart failure // Cardiol. Res. Pract. 2011. V. 2011. P. 532620.
  22. Schumacher S.M., Naga Prasad S.V. Tumor Necrosis Factor-α in Heart Failure: an Updated Review // Curr. Cardiol. Rep. 2018. V. 20. № 11. P. 117.
  23. Sanchez L.D., Tracy J.A., Berkoff D., Pedrosa I. Ischemic colitis in marathon runners: A case-based review // J. Emerg. Med. 2006. V. 30. № 3. P. 321.
  24. Lamers C.R., de Roos N.M., Koppelman L.J.M. et al. Patient experiences with the role of physical activity in inflammatory bowel disease: results from a survey and interviews // BMC Gastroenterol. 2021. V. 21. № 1. P. 172.
  25. Laveneziana P., Palange P. Physical activity, nutritional status and systemic inflammation in COPD // Eur. Respir. J. 2012. V. 40. № 3. P. 522.
  26. Jenkins A.R., Holden N.S., Jones A.W. Inflammatory responses to acute exercise during pulmonary rehabilitation in patients with COPD // Eur. J. Appl. Physiol. 2020. V. 120. № 10. P. 2301.
  27. Cook M.D., Martin S.A., Williams C. et al. Protective in a Mouse Model of Colitis // Brain Behav. Immun. 2013. V. 33. P. 46.
  28. Legeret C., Mählmann L., Gerber M. et al. Favorable impact of long-term exercise on disease symptoms in pediatric patients with inflammatory bowel disease // BMC Pediatr. 2019. V. 19. № 1. P. 297.
  29. Tijardović M., Marijančević D., Bok D. et al. Intense Physical Exercise Induces an Anti-inflammatory Change in IgG N-Glycosylation Profile // Front. Physiol. 2019. V. 10. P. 1522.
  30. Delgado-Alfonso A., Pérez-Bey A., Conde-Caveda J. et al. Independent and combined associations of physical fitness components with inflammatory biomarkers in children and adolescents // Pediatr. Res. 2018. V. 84. № 5. P. 704.
  31. Ramanjaneya M., Abdalhakam I., Bettahi I. et al. Effect of Moderate Aerobic Exercise on Complement Activation Pathways in Polycystic Ovary Syndrome Women // Front. Endocrinol. (Lausanne). 2022. V. 12. P. 740703.
  32. Holt M.F., Michelsen A.E., Shahini N. et al. The Alternative Complement Pathway Is Activated Without a Corresponding Terminal Pathway Activation in Patients With Heart Failure // Front. Immunol. 2021. V. 12. P. 800978.
  33. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease // J. Neuroinflammation. 2020. V. 17. № 1. P. 354.
  34. Gillum R.F., Mussolino M.E., Madans J.H. Counts of neutrophils, lymphocytes, and monocytes, cause-specific mortality and coronary heart disease: The NHANES-I epidemiologic follow-up study // Ann. Epidemiol. 2005. V. 15. № 4. P. 266.
  35. Park J.M., Lee H.S., Park J.Y. et al. White blood cell count as a predictor of incident type 2 diabetes mellitus among non-obese adults: A longitudinal 10-year analysis of the korean genome and epidemiology study // J. Inflamm. Res. 2021. V. 14. P. 1235.
  36. Gan W.Q., Man S.F.P., Senthilselvan A., Sin D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis // Thorax. 2004. V. 59. № 7. P. 574.
  37. Mack D.R., Saul B., Boyle B. et al. Analysis of Using the Total White Blood Cell Count to Define Severe New-onset Ulcerative Colitis in Children // J. Pediatr. Gastroenterol. Nutr. 2020. V. 71. № 3. P. 354.
  38. Johannsen N.M., Swift D.L., Johnson W.D. et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW // PLoS One. 2012. V. 7. № 2. P. e31319.
  39. Marruganti C., Baima G., Grandini S. et al. Leisure-time and occupational physical activity demonstrate divergent associations with periodontitis: A population-based study // J. Clin. Periodontol. 2023. V. 50. № 5. P. 559.
  40. Noz M.P., Hartman Y.A.W., Hopman M.T.E. et al. Sixteen-Week Physical Activity Intervention in Subjects With Increased Cardiometabolic Risk Shifts Innate Immune Function Towards a Less Proinflammatory State // J. Am. Heart Assoc. 2019. V. 8. № 21. P. e013764.
  41. de Matos M.A., Garcia B.C.C., Vieira D.V. et al. High-intensity interval training reduces monocyte activation in obese adults // Brain. Behav. Immun. 2019. V. 80. P. 818.
  42. Adamo L., Rocha-Resende C., Mann D.L. The Emerging Role of B Lymphocytes in Cardiovascular Disease // Annu. Rev. Immunol. 2020. V. 38. P. 99.
  43. Giuffrida P., Corazza G.R., Di Sabatino A. Old and New Lymphocyte Players in Inflammatory Bowel Disease // Dig. Dis. Sci. 2018. V. 63. № 2. P. 277.
  44. Steiner R., Pilat N. The potential for Treg-enhancing therapies in transplantation // Clin. Exp. Immunol. 2023. V. 211. № 2. P. 122.
  45. Gonçalves C.A.M., Dantas P.M.S., dos Santos I.K. et al. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review // Front. Physiol. 2020. V. 10. P. 1602.
  46. Florin A., Lambert C., Sanchez C. et al. The secretome of skeletal muscle cells: A systematic review // Osteoarthr. Cartil. Open. 2020. V. 2. № 1. P. 100019.
  47. Severinsen M.C.K., Pedersen B.K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines // Endocr. Rev. 2020. V. 41. № 4. P. 594.
  48. Izumiya Y., Bina H.A., Ouchi N. et al. FGF21 is an Akt-regulated myokine // FEBS Lett. 2008. V. 582. № 27. P. 3805.
  49. Catoire M., Mensink M., Kalkhoven E. et al. Identification of human exercise-induced myokines using secretome analysis // Physiol. Genomics. 2014. V. 46. № 7. P. 256.
  50. Broholm C., Laye M.J., Brandt C. et al. LIF is a contraction-induced myokine stimulating human myocyte proliferation // J. Appl. Physiol. 2011. V. 111. № 1. P. 251.
  51. Hjorth M., Norheim F., Meen A.J. et al. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle // Physiol. Rep. 2015. V. 3. № 8. P. e12473.
  52. Gopal S. Syndecans in Inflammation at a Glance // Front. Immunol. 2020. V. 11. P. 227.
  53. Tanino Y., Chang M.Y., Wang X. et al. Syndecan-4 regulates early neutrophil migration and pulmonary inflammation in response to lipopolysaccharide // Am. J. Respir. Cell Mol. Biol. 2012. V. 47. № 2. P. 196.
  54. Rao R.R., Long J.Z., White J.P. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis // Cell. 2014. V. 157. № 6. P. 1279.
  55. Bae J.Y. Aerobic Exercise Increases Meteorin-Like Protein in Muscle and Adipose Tissue of Chronic High-Fat Diet-Induced Obese Mice // Biomed Res. Int. 2018. V. 2018. P. 6283932.
  56. Aoi W., Naito Y., Takagi T. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise // Gut. 2013. V. 62. № 6. P. 882.
  57. Said N.A., Elmarakby A.A., Imig J.D. et al. SPARC ameliorates ovarian cancer-associated inflammation // Neoplasia. 2008. V. 10. № 10. P. 1092.
  58. Aoyama T., Inokuchi S., Brenner D.A., Seki E. CX3CL1-CX3CR1 interaction prevents CCl4 induced liver inflammation and fibrosis // Hepatology. 2010. V. 52. № 4. P. 1390.
  59. Cardona A.E., Pioro E.P., Sasse M.E. et al. Control of microglial neurotoxicity by the fractalkine receptor // Nat. Neurosci. 2006. V. 9. № 7. P. 917.
  60. Haskell C.A., Cleary M.D., Charo I.F. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction: Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation // J. Biol. Chem. 1999. V. 274. № 15. P. 10053.
  61. Lee Y.S., Morinaga H., Kim J.J. et al. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion // Cell. 2013. V. 153. № 2. P. 413.
  62. Wong B.W.C., Wong D., McManus B.M. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease // Cardiovasc. Pathol. 2002. V. 11. № 6. P. 332.
  63. Imai T., Hieshima K., Haskell C. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion // Cell. 1997. V. 91. № 4. P. 521.
  64. Gleeson M., Bishop N.C., Stensel D.J. et al. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease // Nat. Rev. Immunol. 2011. V. 11. № 9. P. 607.
  65. Ben Ounis O., Elloumi M., Lac G. et al. Two-month effects of individualized exercise training with or without caloric restriction on plasma adipocytokine levels in obese female adolescents // Ann. Endocrinol. (Paris). 2009. V. 70. № 4. P. 235.
  66. Mujumdar P.P., Duerksen-Hughes P.J., Firek A.F., Hessinger D.A. Long-term, progressive, aerobic training increases adiponectin in middle-aged, overweight, untrained males and females // Scand. J. Clin. Lab. Invest. 2011. V. 71. № 2. P. 101.
  67. Chow L.S., Gerszten R.E., Taylor J.M. et al. Exerkines in health, resilience and disease // Nat. Rev. Endocrinol. 2022. V. 18. № 5. P. 273.
  68. Irwin M.R. Sleep and inflammation: partners in sickness and in health // Nat. Rev. Immunol. 2019. V. 19. № 11. P. 702.
  69. van Leeuwen W.M.A., Lehto M., Karisola P. et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP // PLoS One. 2009. V. 4. № 2. P. e4589.
  70. Irwin M.R., Olmstead R., Carroll J.E. Archival Report Sleep Disturbance, Sleep Duration, and In fl ammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation // Biol. Psychiatry. 2016. V. 80. № 1. P. 40.
  71. Said E.A., Al-Abri M.A., Al-Saidi I. et al. Sleep deprivation alters neutrophil functions and levels of Th1-related chemokines and CD4 + T cells in the blood // Sleep Breath. 2019. V. 23. № 4. P. 1331.
  72. Lasselin J., Rehman J., Åkerstedt T. et al. Brain, Behavior, and Immunity Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations // Brain Behav. Immun. 2015. V. 47. P. 93.
  73. Dolezal B.A., Neufeld E.V., Boland D.M. et al. Interrelationship between Sleep and Exercise: A systematic review // Adv. Prev. Med. 2017. V. 2017. P. 1364387.
  74. Xie Y., Liu S., Chen X.J. et al. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // Front. Psychiatry. 2021. V. 12. P. 664499.
  75. Cheval B., Maltagliati S., Sieber S. et al. Physical inactivity amplifies the negative association between sleep quality and depressive symptoms // Prev. Med. 2022. V. 164. P. 107233.
  76. Koohsari M.J., Yasunaga A., Mccormack G.R. et al. Sedentary behaviour and sleep quality // Sci. Rep. 2023. V. 13. № 1. P. 1180.
  77. Uchida S., Shioda K., Morita Y. et al. Exercise effects on sleep physiology // Front. Neurol. 2012. V. 3. P. 48.
  78. Liu Y., Wang Y., Jiang C. Inflammation: The Common Pathway of Stress-Related Diseases // Front. Hum. Neurosci. 2017. V. 11. P. 316.
  79. Артеменков А.А. Возраст-зависимая дисрегуляция иммунного ответа у человека // Медицинская иммунология. 2021. Т. 23. № 5. С. 1005.
  80. Marsland A.L., Walsh C., Lockwood K., John-henderson N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta- analysis // Brain Behav. Immun. 2017. V. 64. P. 208.
  81. Lockwood K.G., Marsland A.L., Cohen S., Gianaros P.J. Sex differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein // Brain. Behav. Immun. 2016. V. 58. P. 173.
  82. Tamminen N., Reinikainen J., Appelqvist-schmidlechner K. et al. Associations of physical activity with positive mental health: A population- based study // Ment. Health Phys. Act. 2020. V. 18. № 24. P. 100319.
  83. Peluso M.A., Guerra de Andrade L.H. Physical Activity and Mental Health: Associations between Exercise and Mood // Clinics. 2005. V. 60. № 1. P. 61.
  84. Caplin A., Chen F.S., Beauchamp M.R., Puterman E. Psychoneuroendocrinology The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor // Psychoneuroendocrinology. 2021. V. 131. P. 105336.
  85. Corazza D.I., Sebastião É., Teodorov E., Santos-galduróz R.F. Influence of chronic exercise on serum cortisol levels in older adults // Eur. Rev. Aging Phys. Act. 2014. V. 11. № 1. P. 25.
  86. Rimmele U., Zellweger B.C., Marti B. et al. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men // Psychoneuroendocrinology. 2007. V. 32. № 6. P. 627.
  87. Klaperski S., von Dawans B., Heinrichs M., Fuchs R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial // J. Behav. Med. 2014. V. 37. P. 1118.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024