Architectonics of Ubiquitin Chains
- Авторлар: Ivanova K.A.1, Belogurov A.A.1, Kudriaeva A.A.1
- 
							Мекемелер: 
							- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
 
- Шығарылым: Том 50, № 4 (2024)
- Беттер: 379-397
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0132-3423/article/view/670826
- DOI: https://doi.org/10.31857/S0132342324040038
- EDN: https://elibrary.ru/MXJACY
- ID: 670826
Дәйексөз келтіру
Аннотация
Ubiquitination, one of the most common posttranslational modifications of proteins, has a significant impact on its functions, such as stability, activity and cellular localization. Disorders in the processes of ubiquitination and deubiquitination are associated with various oncological and neurodegenerative diseases. The complexity of ubiquitin signaling – monoubiquitination and polyubiquitination with different lengths and types of interconnections between ubiquitins – determines their versatility and ability to regulate hundreds of different cellular processes. Advanced biochemical, mass spectrometric and computational methods are required for in-depth understanding of the mechanisms of assembly and disassembly, detection of ubiquitin chains and their signal transmission. Recent scientific achievements make it possible to identify the ubiquitination of proteins and the structure of ubiquitin chains, however, there are still a considerable number of unresolved issues in this area. Current review claims for a detailed analysis of the current understanding of the architectonics of the ubiquitin chains.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
K. Ivanova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: anna.kudriaeva@ibch.ru
				                					                																			                												                	Ресей, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Belogurov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
														Email: alexey.belogurov.jr@gmail.com
				                					                																			                												                	Ресей, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Kudriaeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
														Email: anna.kudriaeva@ibch.ru
				                					                																			                												                	Ресей, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
Әдебиет тізімі
- Kudriaeva A.A., Belogurov A.A. // Biochemistry (Moscow). 2019. V. 84. P. 159–192. https://doi.org/10.1134/S0006297919140104
- Kudriaeva A.A., Sokolov A.V., Belogurov A.A. // Act. Nat. 2020. V. 12. P. 18–32. https://doi.org/10.32607/actanaturae.10936
- Kudriaeva A.A., Lipkin V.M., Belogurov A.A. // Dokl. Biochem. Biophys. 2020. V. 493. P. 193–197. https://doi.org/10.1134/S1607672920040079
- Bacheva A.V., Gotmanova N.N., Belogurov A.A., Kudriaeva A.A. // Biochemistry (Moscow). 2021. V. 86. P. S71–S95. https://doi.org/10.1134/S0006297921140066
- Komander D., Rape M. // Annu. Rev. Biochem. 2012. V. 81. P. 203–229. https://doi.org/10.1146/annurev-biochem-060310170328
- Yau R., Rape M. // Nat. Cell Biol. 2016. V. 18. P. 579– 586. https://doi.org/10.1038/ncb3358
- Kudriaeva A.A., Livneh I., Baranov M.S., Ziganshin R.H., Tupikin A.E., Zaitseva S.O., Kabilov M.R., Ciechanover A., Belogurov A.A. // Cell. Chem. Biol. 2021. V. 28. P. 1192–1205. https://doi.org/10.1016/j.chembiol.2021.02.009
- Huang Q., Zhang X. // Proteomics. 2020. V. 20. P. 1900100. https://doi.org/10.1002/pmic.201900100
- Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., Gygi S.P. // Nat. Biotechnol. 2003. V. 21. P. 921–926. https://doi.org/10.1038/nbt849
- Akimov V., Henningsen J., Hallenborg P., Rigbolt K.T.G., Jensen S.S., Nielsen M.M., Kratchmarova I., Blagoev B. // J. Proteome Res. 2014. V. 13. P. 4192–4204. https://doi.org/10.1021/pr500549h
- Denis N.J., Vasilescu J., Lambert J., Smith J.C., Figeys D. // Proteomics. 2007. V. 7. P. 868–874. https://doi.org/10.1002/pmic.200600410
- Newton K., Matsumoto M.L., Wertz I.E., Kirkpatrick D.S., Lill J.R., Tan J., Dugger D., Gordon N., Sidhu S.S., Fellouse F.A., Komuves L., French D.M., Ferrando R.E., Lam C., Compaan D., Yu C., Bosanac I., Hymowitz S.G., Kelley R.F., Dixit V.M. // Cell. 2008. V. 134. P. 668–678. https://doi.org/10.1016/j.cell.2008.07.039
- Hjerpe R., Aillet F., Lopitz-Otsoa F., Lang V., England P., Rodriguez M.S. // EMBO Rep. 2009. V. 10. P. 1250–1258. https://doi.org/10.1038/embor.2009.192
- Xolalpa W., Mata-Cantero L., Aillet F., Rodriguez M.S. // Methods Mol. Biol. 2016. P. 161–175. https://doi.org/10.1007/978-1-4939-3756-1_8
- Mattern M., Sutherland J., Kadimisetty K., Barrio R., Rodriguez M.S. // Trends Biochem. Sci. 2019. V. 44. P. 599–615. https://doi.org/10.1016/j.tibs.2019.01.011
- Kadimisetty K., Sheets K.J., Gross P.H., Zerr M.J., Ouazia D. // Methods Mol. Biol. 2021. P. 185–202. https://doi.org/10.1007/978-1-0716-1665-9_10
- He W., Wei L., Zou Q. // Brief. Funct. Genomics. 2019. V. 18. P. 220–229. https://doi.org/10.1093/bfgp/ely039
- Haakonsen D.L., Rape M. // Trends Cell Biol. 2019. V. 29. P. 704–716. https://doi.org/10.1016/j.tcb.2019.06.003
- Hua X., Chu G.-C., Li Y.-M. // Chembiochem. 2020. V. 21. P. 3313–3318. https://doi.org/10.1002/cbic.202000295
- Meyer H.-J., Rape M. // Cell. 2014. V. 157. P. 910–921. https://doi.org/10.1016/j.cell.2014.03.037
- Fricker L.D. // J. Am. Soc. Mass Spectrom. 2015. V. 26. P. 1981–1991. https://doi.org/10.1007/s13361-015-1231-x
- Kim M.-S., Zhong J., Pandey A. // Proteomics. 2016. V. 16. P. 700–714. https://doi.org/10.1002/pmic.201500355
- Ohtake F., Saeki Y., Ishido S., Kanno J., Tanaka K. // Mol. Cell. 2016. V. 64. P. 251–266. https://doi.org/10.1016/j.molcel.2016.09.014
- Phu L., Izrael-Tomasevic A., Matsumoto M.L., Bustos D., Dynek J.N., Fedorova A.V., Bakalarski C.E., Arnott D., Deshayes K., Dixit V.M., Kelley R.F., Vucic D., Kirkpatrick D.S. // Mol. Cell Proteomics. 2011. V. 10. P. M110.003756. https://doi.org/10.1074/mcp.M110.003756
- Xu P., Duong D.M., Seyfried N.T., Cheng D.., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. // Cell. 2009. V. 137. P. 133–145. https://doi.org/10.1016/j.cell.2009.01.041
- Ohtake F., Tsuchiya H., Tanaka K., Saeki Y. // Methods Enzymol. 2019. V. 618. P. 105–133. https://doi.org/10.1016/bs.mie.2018.12.019
- Swatek K.N., Usher J.L., Kueck A.F., Gladkova C., Mevissen T.E.T., Pruneda J.N., Skern T., Komander D. // Nature. 2019. V. 572. P. 533–537. https://doi.org/10.1038/s41586-019-1482-y
- Kaiho-Soma A., Akizuki Y., Igarashi K., Endo A., Shoda T., Kawase Y., Demizu Y., Naito M., Saeki Y., Tanaka K., Ohtake F. // Mol. Cell. 2021. V. 81. P. 1411–1424.e7. https://doi.org/10.1016/j.molcel.2021.01.023
- Akizuki Y., Morita M., Mori Y., Kaiho-Soma A., Dixit S., Endo A., Shimogawa M., Hayashi G., Naito M., Okamoto A., Tanaka K., Saeki Y., Ohtake F. // Nat. Chem. Biol. 2023. V. 19. P. 311–322. https://doi.org/10.1038/s41589-022-01178-1
- Geis-Asteggiante L., Lee A.E., Fenselau C. // Methods Enzymol. 2019. V. 626. P. 323–346. https://doi.org/10.1016/bs.mie.2019.06.025
- Jülg J., Edbauer D., Behrends C. // EMBO Rep. 2023. V. 24. P. e55895. https://doi.org/10.15252/embr.202255895
- Yau R.G., Doerner K., Castellanos E.R., Haakonsen D.L., Werner A., Wang N., Yang X.W., Martinez-Martin N., Matsumoto M.L., Dixit V.M., Rape M. // Cell. 2017. V. 171. P. 918–933.e20. https://doi.org/10.1016/j.cell.2017.09.040
- Deol K.K., Crowe S.O., Du J., Bisbee H.A., Guenette R.G., Strieter E.R. // Mol. Cell. 2020. V. 80. P. 796–809.e9. https://doi.org/10.1016/j.molcel.2020.10.017
- Waltho A., Sommer T. // Methods Mol. Biol. 2023. V. 2602. P. 19–38. https://doi.org/10.1007/978-1-0716-2859-1_2
- Lee A.E., Geis-Asteggiante L., Dixon E.K., Kim Y., Kashyap T.R., Wang Y., Fushman D., Fenselau C. // J. Mass Spectrom. 2016. V. 51. P. 315–321. https://doi.org/10.1002/jms.3759
- Crowe S.O., Rana A.S.J.B., Deol K.K., Ge Y., Strieter E.R. // Anal. Chem. 2017. V. 89. P. 4428–4434. https://doi.org/10.1021/acs.analchem.6b03675
- Sparks R.P., Fratti R. // Methods Mol. Biol. 2019. V. 1860. P. 191–198. https://doi.org/10.1007/978-1-4939-8760-3_11
- Song A., Hazlett Z., Abeykoon D., Dortch J., Dillon A., Curtiss J., Martinez S.B., Hill C.P., Yu C., Huang L., Fushman D., Cohen R.E., Yao T. // Elife. 2021. V. 10. P. e72798. https://doi.org/10.7554/eLife.72798
- Seger C. // Wien. Med. Wochenschr. 2012. V. 162. P. 499–504. https://doi.org/10.1007/s10354-012-0147-3
- Pluska L., Jarosch E., Zauber H., Kniss A., Waltho A., Bagola K., von Delbrück M., Löhr F., Schulman B.A., Selbach M., Dötsch V., Sommer T. // EMBO J. 2021. V. 40. P. e106094. https://doi.org/10.15252/embj.2020106094
- Ordureau A., Sarraf S.A., Duda D.M., Heo J.-M., Jedrychowski M.P., Sviderskiy V.O., Olszewski J.L., Koerber J.T., Xie T., Beausoleil S.A., Wells J.A., Gygi S.P., Schulman B.A., Harper J.W. // Mol. Cell. 2014. V. 56. P. 360–375. https://doi.org/10.1016/j.molcel.2014.09.007
- Durcan T.M., Tang M.Y., Pérusse J.R., Dashti E.A., Aguileta M.A., McLelland G.-L., Gros P., Shaler T.A., Faubert D., Coulombe B., Fon E.A. // EMBO J. 2014. V. 33. P. 2473–2491. https://doi.org/10.15252/embj.201489729
- Cunningham C.N., Baughman J.M., Phu L., Tea J.S., Yu C., Coons M., Kirkpatrick D.S., Bingol B., Corn J.E. // Nat. Cell Biol. 2015. V. 17. P. 160–169. https://doi.org/10.1038/ncb3097
- Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., Harper J.W., Gygi S.P. // Mol. Cell. 2011. V. 44. P. 325– 340. https://doi.org/10.1016/j.molcel.2011.08.025
- Wagner S.A., Beli P., Weinert B.T., Nielsen M.L., Cox J., Mann M., Choudhary C. // Mol. Cell Proteomics. 2011. V. 10. P. M111.013284. https://doi.org/10.1074/mcp.M111.013284
- Elia A.E.H., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. // Mol. Cell. 2015. V. 59. P. 867– 881. https://doi.org/10.1016/j.molcel.2015.05.006
- Akutsu M., Dikic I., Bremm A. // J. Cell Sci. 2016. V. 129. P. 875–880. https://doi.org/10.1242/jcs.183954
- Matsumoto M.L., Wickliffe K.E., Dong K.C., Yu C., Bosanac I., Bustos D., Phu L., Kirkpatrick D.S., Hymowitz S.G., Rape M., Kelley R.F., Dixit V.M. // Mol. Cell. 2010. V. 39. P. 477–484. https://doi.org/10.1016/j.molcel.2010.07.001
- Rana A.S.J.B., Ge Y., Strieter E.R. // J. Proteome Res. 2017. V. 16. P. 3363–3369. https://doi.org/10.1021/acs.jproteome.7b00381
- van Huizen M., Kikkert M. // Front. Cell Dev. Biol. 2020. V. 7. P. 1–8. https://doi.org/10.3389/fcell.2019.00392
- Qin Y., Zhou M.-T., Hu M.-M., Hu Y.-H., Zhang J., Guo L., Zhong B., Shu H.-B. // PLoS Pathog. 2014. V. 10. P. e1004358. https://doi.org/10.1371/journal.ppat.1004358
- Jin S., Tian S., Chen Y., Zhang C., Xie W., Xia X., Cui J., Wang R.-F. // EMBO J. 2016. V. 35. P. 866–880. https://doi.org/10.15252/embj.201593596
- Gatti M., Pinato S., Maiolica A., Rocchio F., Prato M.G., Aebersold R., Penengo L. // Cell Rep. 2015. V. 10. P. 226–238. https://doi.org/10.1016/j.celrep.2014.12.021
- Sparrer K.M.J., Gableske S., Zurenski M.A., Parker Z.M., Full F., Baumgart G.J., Kato J., Pacheco-Rodriguez G., Liang C., Pornillos O., Moss J., Vaughan M., Gack M.U. // Nat. Microbiol. 2017. V. 2. P. 1543–1557. https://doi.org/10.1038/s41564-017-0017-2
- Wang Q., Liu X., Cui Y., Tang Y., Chen W., Li S., Yu H., Pan Y., Wang C. // Immunity. 2014. V. 41. P. 919–933. https://doi.org/10.1016/j.immuni.2014.11.011
- Zhao C., Jia M., Song H., Yu Z., Wang W., Li Q., Zhang L., Zhao W., Cao X. // Cell Rep. 2017. V. 21. P. 1613–1623. https://doi.org/10.1016/j.celrep.2017.10.020
- Liu H., Li M., Song Y., Xu W. // Front. Immunol. 2018. V. 9. P. 2479. https://doi.org/10.3389/fimmu.2018.02479
- Xue B., Li H., Guo M., Wang J., Xu Y., Zou X., Deng R., Li G., Zhu H. // J. Virol. 2018. V. 92. P. e00321-18. https://doi.org/10.1128/JVI.00321-18
- Jin S., Tian S., Luo M., Xie W., Liu T., Duan T., Wu Y., Cui J. // Mol. Cell. 2017. V. 68. P. 308.e4–322.e4. https://doi.org/10.1016/j.molcel.2017.09.005
- He X., Zhu Y., Zhang Y., Geng Y., Gong J., Geng J., Zhang P., Zhang X., Liu N., Peng Y., Wang C., Wang Y., Liu X., Wan L., Gong F., Wei C., Zhong H. // EMBO J. 2019. V. 38. P. e100978. https://doi.org/10.15252/embj.2018100978
- Chen Y., Wang L., Jin J., Luan Y., Chen C., Li Y., Chu H., Wang X., Liao G., Yu Y., Teng H., Wang Y., Pan W., Fang L., Liao L., Jiang Z., Ge X., Li B., Wang P. // J. Exp. Med. 2017. V. 214. P. 991–1010. https://doi.org/10.1084/jem.20161387
- Sun H., Zhang Q., Jing Y.-Y., Zhang M., Wang H.-Y., Cai Z., Liuyu T., Zhang Z.-D., Xiong T.-C., Wu Y., Zhu Q.-Y., Yao J., Shu H.-B., Lin D., Zhong B. // Nat. Commun. 2017. V. 8. P. 15534. https://doi.org/10.1038/ncomms15534
- Imai J., Koganezawa Y., Tuzuki H., Ishikawa I., Sakai T. // Cell Biol. Int. 2019. V. 43. P. 1393–1406. https://doi.org/10.1002/cbin.11186
- Kristariyanto Y.A., Choi S.-Y., Rehman S.A.A., Ritorto M.S., Campbell D.G., Morrice N.A., Toth R., Kulathu Y. // Biochem. J. 2015. V. 467. P. 345–352. https://doi.org/10.1042/BJ20141502
- Michel M.A., Elliott P.R., Swatek K.N., Simicek M., Pruneda J.N., Wagstaff J.L., Freund S.M.V., Komander D. // Mol. Cell. 2015. V. 58. P. 95–109. https://doi.org/10.1016/j.molcel.2015.01.042
- Yu Z., Chen T., Li X., Yang M., Tang S., Zhu X., Gu Y., Su X., Xia M., Li W., Zhang X., Wang Q., Cao X., Wang J. // Elife. 2016. V. 5. P. e14087. https://doi.org/10.7554/eLife.14087
- Fei C., Li Z., Li C., Chen Y., Chen Z., He X., Mao L., Wang X., Zeng R., Li L. // Mol. Cell. Biol. 2013. V. 33. P. 4095–4105. https://doi.org/10.1128/MCB.00418-13
- Kristariyanto Y.A., Abdul Rehman S.A., Campbell D.G., Morrice N.A., Johnson C., Toth R., Kulathu Y. // Mol. Cell. 2015. V. 58. P. 83–94. https://doi.org/10.1016/j.molcel.2015.01.041
- Licchesi J.D.F., Mieszczanek J., Mevissen T.E.T., Rutherford T.J., Akutsu M., Virdee S., El Oualid F., Chin J.W., Ovaa H., Bienz M., Komander D. // Nat. Struct. Mol. Biol. 2011. V. 19. P. 62–71. https://doi.org/10.1038/nsmb.2169
- Mevissen T.E.T., Hospenthal M.K., Geurink P.P., Elliott P.R., Akutsu M., Arnaudo N., Ekkebus R., Kulathu Y., Wauer T., El Oualid F., Freund S.M.V., Ovaa H., Komander D. // Cell. 2013. V. 154. P. 169– 184. https://doi.org/10.1016/j.cell.2013.05.046
- Virdee S., Ye Y., Nguyen D.P., Komander D., Chin J.W. // Nat. Chem. Biol. 2010. V. 6. P. 750–757. https://doi.org/10.1038/nchembio.426
- Tran H., Hamada F., Schwarz-Romond T., Bienz M. // Genes Dev. 2008. V. 22. P. 528–542. https://doi.org/10.1101/gad.463208
- Besche H.C., Sha Z., Kukushkin N.V., Peth A., Hock E.-M., Kim W., Gygi S., Gutierrez J.A., Liao H., Dick L., Goldberg A.L. // EMBO J. 2014. V. 33. P. 1159– 1176. https://doi.org/10.1002/embj.201386906
- Jin J., Xie X., Xiao Y., Hu H., Zou Q., Cheng X., Sun S.-C. // Nat. Immunol. 2016. V. 17. P. 259–268. https://doi.org/10.1038/ni.3347
- Kim J.-B., Kim S.Y., Kim B.M., Lee H., Kim I., Yun J., Jo Y., Oh T., Jo Y., Chae H.-D., Shin D.Y. // J. Biol. Chem. 2013. V. 288. P. 12014–12021. https://doi.org/10.1074/jbc.M112.436113
- Yuan W.-C., Lee Y.-R., Lin S.-Y., Chang L.-Y., Tan Y.P., Hung C.-C., Kuo J.-C., Liu C.-H., Lin M.-Y., Xu M., Chen Z.J., Chen R.-H. // Mol. Cell. 2014. V. 54. P. 586–600. https://doi.org/10.1016/j.molcel.2014.03.035
- Kwon Y.T., Ciechanover A. // Trends Biochem. Sci. 2017. V. 42. P. 873–886. https://doi.org/10.1016/j.tibs.2017.09.002
- Sorada T., Morimoto D., Walinda E., Sugase K. // Biochem. Biophys. Res. Commun. 2021. V. 562. P. 94–99. https://doi.org/10.1016/j.bbrc.2021.05.031
- Pickart C.M., Fushman D. // Curr. Opin. Chem. Biol. 2004. V. 8. P. 610–616. https://doi.org/10.1016/j.cbpa.2004.09.009
- Yang W.-L., Wang J., Chan C.-H., Lee S.-W., Campos A.D., Lamothe B., Hur L., Grabiner B.C., Lin X., Darnay B.G., Lin H.-K. // Science. 2009. V. 325. P. 1134–1138. https://doi.org/10.1126/science.1175065
- Lim J., Yue Z. // Dev. Cell. 2015. V. 32. P. 491–501. https://doi.org/10.1016/j.devcel.2015.02.002
- Ohtake F., Tsuchiya H. // J. Biochem. 2017. V. 161. P. 125–133. https://doi.org/10.1093/jb/mvw088
- Swatek K.N., Komander D. // Cell Res. 2016. V. 26. P. 399–422. https://doi.org/10.1038/cr.2016.39
- Uckelmann M., Sixma T.K. // DNA Repair (Amst). 2017. V. 56. P. 92–101. https://doi.org/10.1016/j.dnarep.2017.06.011
- Nowsheen S., Aziz K., Aziz A., Deng M., Qin B., Luo K., Jeganathan K.B., Zhang H., Liu T., Yu J., Deng Y., Yuan J., Ding W., van Deursen J.M., Lou Z. // Nat. Cell Biol. 2018. V. 20. P. 455–464. https://doi.org/10.1038/s41556-018-0071-x
- Maspero E., Valentini E., Mari S., Cecatiello V., Soffientini P., Pasqualato S., Polo S. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 696–701. https://doi.org/10.1038/nsmb.2566
- Hospenthal M.K., Freund S.M.V., Komander D. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 555–565. https://doi.org/10.1038/nsmb.2547
- Valkevich E.M., Sanchez N.A., Ge Y., Strieter E.R. // Biochemistry. 2014. V. 53. P. 4979–4989. https://doi.org/10.1021/bi5006305
- Paudel P., Banos C.M., Liu Y., Zhuang Z. // ACS Chem. Biol. 2023. V. 18. P. 837–847. https://doi.org/10.1021/acschembio.2c00898
- Wang Y.S., Wu K.P., Jiang H.K., Kurkute P., Chen R.H. // Molecules. 2020. V. 25. P. 5200. https://doi.org/10.3390/molecules25215200
- Ohtake F. // Trends Biochem Sci. 2020. V. 45. P. 820821. https://doi.org/10.1016/j.tibs.2020.04.008
- Sun M., Zhang X. // Cell Biosci. 2022. V. 12. P. 126. https://doi.org/10.1186/s13578-022-00870-y
- Di Meo A., Pasic M.D., Yousef G.M. // Oncotarget. 2016. V. 7. P. 52460–52474. https://doi.org/10.18632/oncotarget.8931
- Neagu A.N., Jayathirtha M., Baxter E., Donnelly M., Petre B.A., Darie C.C. // Molecules. 2022. V. 27. P. 2411. https://doi.org/10.3390/molecules27082411
- Singh G., Kumar S., Das R. // Anal Chem. 2023. V. 95. P. 10061–10067. https://doi.org/10.1021/acs.analchem.3c01425
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді











