DFT-calculations of 31P NMR chemical shift of σ-donor phosphorus atoms in platinum complexes
- Авторлар: Kondrashova S.A.1, Latypov S.K.1
- 
							Мекемелер: 
							- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences
 
- Шығарылым: Том 51, № 5 (2025)
- Беттер: 334-342
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/685414
- DOI: https://doi.org/10.31857/S0132344X25050069
- EDN: https://elibrary.ru/KVVYBO
- ID: 685414
Дәйексөз келтіру
Аннотация
The scopes and limitations of the calculation approaches for estimating the 31P NMR shifts for σ-donor phosphorus atoms in platinum complexes are analyzed. It is shown that satisfactory accuracy can be obtained only within the fully relativistic formalism (mDKS) framework. Geometry optimization at the PBE0/{6-31+G(d); Pd(SDD)} level is optimal in terms of “price–quality”. The efficiency of the proposed approach is demonstrated for analyzing cis/trans-isomerism in platinum complexes.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
S. Kondrashova
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: lsk@iopc.ru
				                					                																			                												                	Ресей, 							Kazan						
Sh. Latypov
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences
														Email: lsk@iopc.ru
				                					                																			                												                	Ресей, 							Kazan						
Әдебиет тізімі
- Konnick M.M., Bischof S.M., Yousufuddin M. et al. // J. Am. Chem. Soc. 2014. V. 136. P.10085. https://doi.org/10.1021/ja504368r
- De Castro F., De Luca E., Benedetti M. et al. // Coord. Chem. Rev. 2022. V. 451. P. 214276. https://doi.org/10.1016/j.ccr.2021.214276
- Phosphorus(III) ligands in homogeneous catalysis: design and synthesis / Kamer P.C.J., van Leeuwen P.W.N.M., eds. John Wiley & Sons, 2012.
- Mathey F. // Angew. Chem. Int. Ed. 2003. V. 42. P. 1578. https://doi.org/10.1002/anie.200200557
- Gillespie J.A., Zuidema E., van Leeuwen P.W. et al. // Phosphorus(III) ligands in homogeneous catalysis: Design and synthesis. John Wiley & Sons, 2012.
- Latypov S.K., Ganushevich Y., Kondrashova S. et al. // Organometallics. 2018. V. 37. P. 2348. https://doi.org/10.1021/acs.organomet.8b00319
- Halbert S., Copéret C., Raynaud C. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 2261. https://doi.org/10.1021/jacs.5b12597
- Greif A.H., Hrobárik P., Kaupp M. // Chem. Eur. J. 2017. V. 23. P. 9790. https://doi.org/10.1002/chem.201700844
- Vícha J., Straka M., Munzarová M.L. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1489. https://doi.org/10.1021/ct400726y
- Bühl M., Kaupp M., Malkina O.L. et al. // J. Comput. Chem. 1999. V. 20. P. 91. https://doi.org/10.1002/(SICI)1096-987X(19990115) 20:1<91::AID-JCC10>3.0.CO;2-C
- Jensen F. Introduction to computational chemistry. John wiley& sons, 2017.
- Autschbach J. // Struct. Bond. 2004. V. 112. P. 1. https://doi.org/ 10.1007/b97936
- Calculation of NMR and EPR Parameters / Kaupp M., Buhl M., Malkin V. G. (ed.). Weinheim: Wiley, 2004.
- Semenov V.A., Krivdin L.B. // Magn. Reson. Chem. 2019. V. 58. P. 56. https://doi.org/10.1002/mrc.4922
- Chimichi S., Boccalini M., Matteucci A. et al. // Magn. Reson. Chem. 2010. V. 48. P. 607. https://doi.org/10.1002/mrc.2633
- Balandina A., Kalinin A., Mamedov V. et al. // Magn. Reson. Chem. 2005. V. 43. P. 816. https://doi.org/10.1002/mrc.1612
- Latypov S.K., Polyancev F.M., Yakhvarov D.G. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 6976. https://doi.org/10.1039/C5CP00240K
- Toukach F.V., Ananikov V.P. // Chem. Soc. Rev. 2013. V. 42. P. 8376. https://doi.org/10.1039/C3CS60073D
- Gordon C.P., Raynaud C., Andersen R.A. et al. // Acc. Chem. Res. 2019. V. 52. P. 2278. https://doi.org/10.1021/acs.accounts.9b00225
- Halbert S., Copéret C., Raynaud C. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 2261. https://doi.org/10.1021/jacs.5b12597
- Pawlak T., Munzarová M.L., Pazderski L. et al. // J. Chem. Theory Comput. 2011. V. 7. P. 3909. https://doi.org/10.1021/ct200366n
- Vícha J., Novotný J., Straka M. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 24944. https://doi.org/10.1039/c5cp04214c
- Bagno A., Saielli G. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 4285. https://doi.org/10.1039/C0CP01743D
- Krykunov M., Ziegler T., van Lenthe E. // J. Phys. Chem. A. 2009. V. 113. P. 11495. https://doi.org/10.1021/jp901991s
- Vaara J., Malkina O.L., Stoll H. et al. // J. Chem. Phys. 2001. V. 114. P. 61. https://doi.org/10.1063/1.1330208
- Buhl M., Kaupp M., Malkina O.L. et al. // J. Comput. Chem. 1999. V. 20. P. 91. https://doi.org/10.1002/(SICI)1096-987X(19990115) 20:1<91::AID-JCC10>3.0.CO;2-C
- Kaupp M., Malkina O.L., Malkin V.G. // J. Chem. Phys. 1997. V. 106. P. 9201. https://doi.org/10.1063/1.474053
- Autschbach J., Ziegler T. // Coord. Chem. Rev. 2003. V. 238. P. 83. https://doi.org/10.1016/S0010-8545(02)00287-4
- Krivdin L.B. // Russ. Chem. Rev. 2021. V. 90. P. 1166. https://doi.org/10.1070/RCR4976
- Semenov V.A., Samultsev D.O., Rusakova I.L. et al. // J. Phys. Chem. A. 2019. V. 123. P. 4908. https://doi.org/10.1021/acs.jpca.9b02867
- Kondrashova S.A., Polyancev F.M., Ganushevich Y.S. et al. // Organometallics. 2021. V. 40. P. 1614. https://doi.org/10.1021/acs.organomet.1c00074
- Latypov S.K., Kondrashova S.A., Polyancev F.M. et al. // Organometallics. 2020. V. 39. P. 1413. https://doi.org/10.1021/acs.organomet.0c00127
- Payard P.-A., Perego L.A., Grimaud L. et al. // Organometallics. 2020. V. 39. P. 3121. https://doi.org/10.1021/acs.organomet.0c00309
- Kondrashova S.A., Latypov S.K. // Organometallics. 2023. V. 42. P. 1951. https://doi.org/10.1021/acs.organomet.3c00186
- Kondrashova S.A., Polyancev F.M., Latypov S.K. // Molecules. 2022. V. 27. P. 2668. https://doi.org/10.3390/molecules27092668
- Komorovský S., Repiský M., Malkina O.L. et al. // J. Chem. Phys. 2008. V. 128. P. 104101. https://doi.org/10.1063/1.2837472
- Castro Aguilera A.C., Fliegl H., Cascella M. et al. // Dalton Trans. 2019. V. 48. P. 8076. https://doi.org/10.1039/C9DT00570F
- Sojka M., Nečas M., Toušek J. // J. Mol. Model. 2019. V. 25. P. 1. https://doi.org/ 10.1007/s00894-019-4222-1
- Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://doi.org/10.1103/PhysRev.140.A1133
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A.03. Wallingford (CT, USA): Gaussian, Inc., 2016.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/ 10.1063/1.478522
- Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257. https://doi.org/10.1063/1.1677527
- Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
- Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571. https://doi.org/ 10.1002/(SICI)1096-987X(199610)17: 13<1571::AID-JCC9>3.0.CO;2-P
- Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045. https://doi.org/10.1021/ci600510j
- Hansen A.E., Bouman T.D. // J. Chem. Phys. 1985. V. 82. P. 5035. https://doi.org/ 10.1063/1.448625
- Malkin V.G., Malkina O.L., Reviakine R. et al. MAG-ReSpect. Version 5.1.0, 2019.
- Dyall K.G. // Theor. Chem. Acc. 2004. V. 112. P. 403. https://doi.org/10.1007/s00214-004-0607-y
- Krivdin L.B. // Magn. Reson. Chem. 2022. V. 60. P. 733. https://doi.org/10.1002/mrc.5260
- Carvalho J., Paschoal D., Fonseca Guerra C. et al. // Chem. Phys. Lett. 2020. V. 745. P. 137279. https://doi.org/10.1016/j.cplett.2020.137279
- Silva J.H.C., Dos Santos H.F., Paschoal D.F.S. // Magnetochemistry. 2021. V. 7. P. 148. https://doi.org/10.3390/magnetochemistry7110148
- Paschoal D., Guerra C.F., de Oliveira M.A.L. et al. // J. Comput. Chem. 2016. V. 37. P. 2360. https://doi.org/10.1002/jcc.24461
- Tsipis A.C., Karapetsas I.N. // Dalton Trans. 2014. V. 43. P. 5409. https://doi.org/10.1039/C3DT53594K
- Wicht D.K., Paisner S.N., Lew B.M. et al. // Organometallics. 1998. V. 17. P. 652. https://doi.org/10.1021/om9708891
- Mukhopadhyay S., Lasri J., Guedes da Silva M.F.C. et al. // Polyhedron. 2008. V. 27. P. 2883. https://doi.org/10.1016/j.poly.2008.06.031
- Jia Y.-X., Yang X.-Y., Tay W.S. et al. // Dalton Trans. 2016. V. 45. P. 2095. https://doi.org/10.1039/C5DT02049B
- Crumpton-Bregel D.M., Goldberg K.I. // J. Am. Chem. Soc. 2003. V. 125. P. 9442. https://doi.org/10.1021/ja029140u
- Colebatch A.L., Cade I.A., Hill A.F. et al. // Organometallics. 2013. V. 32. P. 4766. https://doi.org/10.1021/om400406s
- Muenzner J.K., Rehm T., Biersack B. et al. // J. Med. Chem. 2015. V. 58. P. 6283. https://doi.org/10.1021/acs.jmedchem.5b00896
- Fuertes S., Chueca A.J., Sicilia V. et al. // Inorg. Chem. 2015. V. 54. P. 9885. https://doi.org/10.1021/acs.inorgchem.5b01655
- Kim Y.J., Park J.I., Lee S.C. et al. // Organometallics. 1999. V. 18. P. 1349. https://doi.org/ 10.1021/om980939h
- Bennett M.A., Bhargava S.K., Keniry M.A. et al. // Organometallics. 2008. V. 27. P. 5361. https://doi.org/10.1021/om8004806
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді



