Photoluminescent Lanthanide(III) Complexes Based on 2-[((4-Chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione
- Autores: Smirnova K.S.1, Sanzhenakova E.A.1, Eltsov I.V.2, Pozdnyakov I.P.3, Russkikh A.A.4, Dotsenko V.V.4, Lider E.V.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk National Research State University
- Voevodsky Institute of Chemical Kinetics and Consumption, Siberian Branch, Russian Academy of Sciences
- Kuban State University
 
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 296-309
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667597
- DOI: https://doi.org/10.31857/S0132344X24050026
- EDN: https://elibrary.ru/NKMRCQ
- ID: 667597
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Five coordination compounds of the general formula [LnL2(NO3)3]n (Ln3+ = Eu (I), Sm (II), Tb(III), Dy (IV), and Gd (V)) are synthesized from 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione (L). The crystal structures of the ligand and complex III are determined by X-ray diffraction (XRD) of single crystals (CIF files CCDC nos. 2298715 (L) and 2298716 (III)). Complex III is polymeric due to the bidentate-bridging coordination of the ligand by the oxygen atoms of the cyclohexanedione fragment, and the coordination number of the central atom is ten. According to the phase XRD data, all synthesized polycrystalline compounds are isostructural to the single crystals of complex III. The photoluminescence properties of the ligand and coordination compounds in the polycrystalline state are studied. The energy transfer from the ligand to lanthanide(III) ion is shown to proceed via the “antenna” mechanism in the case of the europium(III), samarium(III), and terbium(III) compounds. Among the series of the complexes, the highest quantum yield is observed for compound I (21.9%), and the sensibilization efficiency of the europium(III) complex is 43.5%.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
K. Smirnova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Novosibirsk						
E. Sanzhenakova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Novosibirsk						
I. Eltsov
Novosibirsk National Research State University
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Novosibirsk						
I. Pozdnyakov
Voevodsky Institute of Chemical Kinetics and Consumption, Siberian Branch, Russian Academy of Sciences
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Russkikh
Kuban State University
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Krasnodar						
V. Dotsenko
Kuban State University
														Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Krasnodar						
E. Lider
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: lisalider@gmail.com
				                					                																			                												                	Rússia, 							Novosibirsk						
Bibliografia
- Bunzli, J.C.G., Chem. Rev., 2010, vol. 110, no. 5, p. 2729.
- Aspinall, H.C., Chem. Rev., 2002, vol. 102, no. 6, p. 1807.
- Hasegawa, Y., Kitagawa, Y., and Nakanishi, T., NPG Asia Mater., 2018, vol. 10, no. 4, p. 52.
- Bao, G., Wen, S., Lin, G., et al., Coord. Chem. Rev., 2021, vol. 429, p. 213642.
- Wei, C., Ma, L., Wei, H.B., et al., Sci. China Technol. Sci., 2018, vol. 61, no. 9, p. 1265.
- Armelao, L., and Quici, S., Coord. Chem. Rev., 2010, vol. 254, nos. 5–6, p. 48705.
- Bryleva, Y.A., Komarov, V.Y., Glinskaya, L.A., et al., New J. Chem., 2023, vol. 47, no. 21, p. 10446.
- Bryleva, Y.A., Artemʹev, A.V., Glinskaya, L.A., et al., J. Struct. Chem., 2021, vol. 62, no. 2, p. 265.
- Bryleva, Y.A., Artemʹev, A.V., Glinskaya, L.A., et al., Inorg. Chim. Acta, 2021, vol. 516.
- Artemʹev, A.V., Gusarova, N.K., Malysheva, S.F., et al., Mendeleev Commun., 2012, vol. 22, no. 6, p. 294.
- Crosby, G.A., Whan, R.E., and Freeman, J.J., J. Phys. Chem., 1962, vol. 6, no. 12, p. 2493.
- Rao, V.S. and Sauve, G., Comprehensive Organic Functional Group Transformations, 1995, vol. 2, p. 737.
- Chiara, J.L., Comprehensive Organic Functional Group Transformations II, 2005, p. 709.
- Lue, P., and Greenhill, J.V., Adv. Heterocycl. Chem., 1996, vol. 67, p. 207.
- Aly, A.A., and Hassan, A.A., Adv. Heterocycl. Chem., 2014, vol. 112, p. 145.
- Ebenezer, W.J. and Wight, P., ChemInform, 1996, p. 20576.
- Liu, T., Wan, J.P., and Liu, Y., Chem. Commun., 2021, vol. 57, no. 72, p. 9112.
- Yu, T., Ji, F., Huang, D., et al., Org. Chem. Front., 2021, vol. 8, no. 20, p. 5716.
- Wan, J.P., Cao, S., and Liu, Y., Org. Lett., 2016, vol. 18, no. 23, p. 6034.
- Stanovnik, B., Eur. J. Org. Chem., 2019, vol. 2019, no. 31–32, p. 5120.
- Gao, Y., Liu, Y., and Wan, J.P., Org. Chem., 2019, vol. 84, no. 4, p. 2243.
- Edafiogho, I.O. and Kombian, S.B., J. Pharm. Sci., 2007, vol. 96, no. 10, p. 2509.
- Bimoussa, A., Oubella, A., Hachim, M.E., et al., J. Mol. Struct., 2021, vol. 1241, 130622.
- Masaret, G.S., ChemistrySelect, 2021, vol. 6, no. 5, p. 974.
- Eddington, N.D., Cox, D.S., Khurana, M., et al., Eur. J. Med. Chem., 2003, vol. 38, no. 1, p. 49.
- Anderson, A.J., Nicholson, J.M., Bakare, O., et al., Bioorg. Med. Chem., 2006, vol. 14, no. 4, p. 997.
- Amaye, I.J., Harper, T.L., and Jackson-Ayotunde, P., J. Fluorine Chem., 2021, vol. 251, p. 109886.
- Li, H., Shu, H., Wang, X., et al., Org. Mater., 2020, vol. 02, no. 1, p. 033.
- Li, H., Shu, H., Liu, Y., et al., Adv. Opt. Mater., 2019, vol. 7, no. 8, p. 1801719.
- Smirnova, K.S., Ivanova, E.A., Sukhikh, T.S., et al., Inorg. Chim. Acta, 2021, vol. 525, p. 120490.
- Smirnova, K.S., Ivanova, E.A., Eltsov, I.V., et al., Polyhedron, 2022, vol. 227, p. 116122.
- Smirnova, K.S., Ivanova, E.A., Pozdnyakov, I.P., et al., Inorganica Chim. Acta, 2022, vol. 542, p. 121107.
- Jiang, H., Li, Y., Sun, M., et al., Arkivoc. Arkat., 2020, vol. 2020, no. 6, p. 1.
- Mohareb, R.M., Manhi, F.M., Mahmoud, M.A.A., et al., Med. Chem. Res., 2020, vol. 29, no. 8, p. 1536.
- Van Tinh, D., Fischer, M., and Stadlbauer, W., J. Heterocycl. Chem., 1996, vol. 33, no. 3, p. 905.
- Rather, M.A., Lone, A.M., Teli, B., et al., Medchemcomm, 2017, vol. 8, no. 11, p. 2133.
- Wang, J.M., Asami, T., Che, F.S., et al., J. Agric. Food Chem., 1997, vol. 45, no. 7, p. 2728.
- Wolfbeis, O.S. and Erich Ziegler, E.Z., Z. Naturforsch., A: Phys. Sci., 1976, vol. 31, no. 11, p. 1519.
- Zacharias, G., Wolfbeis, O.S., and Junek, H., Monatsh. Chem., 1974, vol. 105, no. 6, p. 1283.
- Fossa, P., Menozzi, G., Dorigo, P., et al., Bioorg. Med. Chem., 2003, vol. 11, no. 22, p. 4749.
- Frolov, K.A., Dotsenko, V.V., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 9, p. 1301.
- Komkov, A.V., Prezent, M.A., Ignatenko, A.V., et al., Russ. Chem. Bull., 2006, vol. 55, no. 11, p. 2085.
- Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., et al., Russ. Chem. Bull., 2002, vol. 51, no. 8, p. 1556.
- Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 48, no. 10, p. 1568.
- Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., et al., Chem. Heterocycl. Compd., 2013, vol. 49, no. 3, p. 440.
- Grannik, V.G., Shanazarov, A.K., Solovʹeva, N.P., et al., Chem. Heterocycl. Compd., 1987, vol. 23, no. 11, p. 1171.
- Qin, J.H. and Han, X.D., Z. Krist. New Cryst. Struct., 2012, vol. 227, no. 1, p. 7.
- Eremina, Y.A., Ermakova, E.A., Sukhikh, T.S., et al., J. Struct. Chem., 2021, vol. 62, no. 2, p. 309.
- Yang, L.W., Liu, S., Rettig, S.J., et al., Inorg. Chem., 1995, vol. 34, no. 19, p. 4921.
- CrysAlisPro 1.171.38.46, The Woodlands: Rigaku Oxford Diffraction, 2015.
- APEX2 (version 2.0), SAINT (version 8.18c) and SADABS (version 2.11), Madison: Bruker Advanced X-ray Solutions, 2000–2012.
- Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.
- Sheldrick, G.M., Acta Crystallogr, Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
- Werts, M.H.V., Jukes, R.T.F., and Verhoeven, J.W., Phys. Chem. Chem. Phys., 2002, vol. 4, no. 9, p. 1542.
- Werts, M.H.V., Luminescent Lanthanide Complexes: Visible Light Sensitised Red and Near-Infrared Luminescence, Univ. of Amsterdam, 2000.
- Andres, J. and Chauvin, A.-S., Encycl. Inorg. Bioinorg. Chem., 2012, p. 1.
- Klink, S.I., Hebbink, G.A., Grave, L., et al., J. Phys. Chem. A, 2002, vol. 106, no. 15, p. 3681.
- Bunzli, J.-C.G. and Eliseeva, S.V., Lanthanide Luminescence, Hanninen, P. and Harma, H. (Eds), 2010, vol. 7, p. 1.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 











