Complexes of Hexacoordinated Ni(II) Based on Diacetyl bis-hetarylhydrazones: Structures and Magnetic Properties
- Autores: Melikhov M.V.1, Korchagin D.V.2, Tupolova Y.P.1, Popov L.D.1, Chetverikova V.A.1, Tkachev V.V.2, Utenyshev A.N.2, Efimov N.N.3, Shcherbakov I.N.3, Aldoshin S.M.2
-
Afiliações:
- Southern Federal University
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 50, Nº 11 (2024)
- Páginas: 739-752
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667647
- DOI: https://doi.org/10.31857/S0132344X24110014
- EDN: https://elibrary.ru/LNLALO
- ID: 667647
Citar
Resumo
Mononuclear nickel complexes [NiL1(NCS)2] ⋅ 2DMSO (I), [NiL1(NCS)2] ⋅ DMF (II), and [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O (III) with the distorted octahedral coordination node, where L1 and L2 are the tetradentate ligand systems derived from the products of the condensation of diacetyl with 2-hydrazinoquinoline and 2-hydrazino-4,6-dimethylpyrimidine, respectively, are synthesized. The structures of the compounds are determined by IR pectroscopy and XRD (CIF files ССDС nos. 2219793 (I), 2142035 (II), and 2219794 (III)). The quantum chemical modeling of the axial parameter of magnetic anisotropy in the zero field (D) is performed for the synthesized compounds in the framework of the SA-CASSCF+NEVPT2 method. The complexes are shown to be characterized by three-axis magnetic anisotropy close to the light magnetization plane with positive D. The axial parameter of magnetic anisotropy (Dexp = 8.79 cm–1) determined by the approximation of the magnetometry data on complex [NiL2(NCS)2] ⋅ 0,5CH3OH ⋅ 1,5H2O is consistent with the calculated value (Dcalc = 11.5 cm–1).
Texto integral

Sobre autores
M. Melikhov
Southern Federal University
Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don
D. Korchagin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast
Yu. Tupolova
Southern Federal University
Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don
L. Popov
Southern Federal University
Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don
V. Chetverikova
Southern Federal University
Email: yptupolova@sfedu.ru
Rússia, Rostov-on-Don
V. Tkachev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast
A. Utenyshev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast
N. Efimov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: korden@icp.ac.ru
Rússia, Moscow
I. Shcherbakov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Rússia, Moscow
S. Aldoshin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: yptupolova@sfedu.ru
Rússia, Chernogolovka, Moscow oblast
Bibliografia
- Troiani F., Affronte M. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3119.
- Stamp P.C., Gaita-Arino A. // J. Mater. Chem. 2009. V. 19. № 12. P. 1718.
- Timco G.A., Faust T.B., Tuna F. et al. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3067.
- Sanvito S. // Chem. Soc. Rev. 2011. V. 40. № 6. P. 3336.
- Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021. vol. 90. no. 10. p. 1330.
- Neese F., Pantazisa D.A. // Faraday Discuss. 2011. V. 148. P. 229.
- Boca R. // Coord. Chem. Rev. 2004. V. 248. № 9–10. P. 757.
- Ganyushin D., Neese F. // J. Chem. Phys. 2006. V. 125. № 2. P. 024103.
- Cirera J., Ruiz E., Alvarez S. et at. // Chem. Eur. J. 2009. V. 15. № 16. P. 4078.
- Sarkar A., Dey S., Rajaraman G. // Chem. Eur. J. 2020. V. 26. № 62. P. 14036.
- Craig G. A., Murrie M. // Chem. Soc. Rev. 2015. № 44. P. 2135.
- Bar A.K., Pichon C., Sutter J.-P. // Coord. Chem. Rev. 2016. V. 308. P. 346.
- Tupolova Y.P., Lebedev V. E., Shcherbakov I.N. // New J. Chem. 2023. V. 47. № 22. P. 10484.
- Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. № 11. P. 153.
- Popov L.D., Morozov A.N., Shcherbako I.N. et al. // Russ. Chem. Rev. 2009. vol. 78. no. 7. p. 643.
- Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A. et al. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
- Tupolova Yu.P., Shcherbakov I.N., Korchagin D.V. et al. // J. Phys. Chem. C. 2020. V. 124. № 47. P. 25957.
- Tupolova Y.P., Lebedev V.E., Korchagin D.V. et al. // New J. Chem. 2023. V. 47. № 22. P. 10884.
- Tupolova Y.P., Shcherbakov I.N., Popov L.D. et al. // Dalton Trans. 2019. V. 48. 6960.
- Дзиомко В.М., Красавин И.А., Мирошкина Н.И. // Методы получения химический реактивов и препаратов. 1965. № 12. С. 50.
- Kosolapoff G.M., Roy C.H. // J. Org. Chem. 1961. V. 26. P. 1895.
- Tupolova Y.P., Korchagin D.V., Lebedev V.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. Р. 362. https://doi.org/10.31857/S0132344X22060068
- CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis
- SHELXTL. Version 6.14. Madison (WI, USA): Bruker AXS, 2000.
- Roos B.O., Taylor P. R., Sigbahn P. E.M. // Chem. Phys. 1980. V. 48. № 2. P. 157.
- Per S., Anders H., Björn R., Bernard L. // Phys. Scripta. 1980. V. 21. № 3–4. P. 323.
- Siegbahn P.E.M., Almlöf J., Heiberg A. et al. // J. Chem. Phys. 1981. V. 74. № 4. P. 2384–2396.
- Angeli C., Cimiraglia R., Evangelisti S. et al. // J. Chem. Phys. 2001. V. 114. № 23. P. 10252.
- Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. № 3. P. 297.
- Angeli C., Cimiraglia R. // Theor. Chem. Acc. 2002. V. 107. № 5. P. 313.
- Angeli C., Cimiraglia R., Malrieu J.-P. // J. Chem. Phys. 2002. V. 117. № 20. P. 9138.
- Hess B.A. // Phys. Rev. A. 1986. № 33. № 6. P. 3742.
- Pantazis D.A., Chen X.Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908.
- Schafer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
- Schafer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
- Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. Art. e1327.
- Atanasov M., Ganyushin D., Sivalingam K. et al. // Molecular Electronic Structures of Transition Metal Complexes II / Eds. Mingos D. M.P., Day P., Dahl J. P. Berlin, Heidelberg: Springer, 2012. P. 149.
- Singh S.K., Eng J., Atanasov M. et al. // Coord. Chem. Rev. 2017. V. 344. P. 2.
- Alvarez S., Alemany P., Casanova D. J, et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
- Gomez-Coca S., Cremades E., Aliaga-Alcalde N. et al. // J. Am. Chem. Soc. 2013. V. 135. № 18. P. 7010.
- Gómez-Coca S., Aravena D., Morales R. et al. // Coord. Chem. Rev. 2015. V. 289–290. P. 379.
Arquivos suplementares
