Cadmium(II)-Organic Frameworks with the Polynuclear Unit: Dimensionality Control and Luminescence Response to Pyridine
- Autores: Dubskikh V.A.1, Lysova A.A.1, Samsonenko D.G.1, Dybtsev D.N.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Edição: Volume 50, Nº 9 (2024)
- Páginas: 566-576
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667663
- DOI: https://doi.org/10.31857/S0132344X24090047
- EDN: https://elibrary.ru/LXOZCY
- ID: 667663
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New porous metal-organic frameworks (MOF) [Cd7(Btdc)7(Bpa)2(Dmf)2(H2O)2] · 15Dmf · 2H2O (I) and [Cd7(Btdc)7(Bpe)2(Dmf)2] · 15Dmf · 3H2O (II) (H2Btdc is 2,2’-bithiophene-5,5’-dicarboxylic acid, Bpa is 1,2-bis(4-pyridyl)ethane, Bpe is 1,2-bis(4-pyridyl)ethylene, and Dmf is N,N-dimethylformamide) are synthesized under solvatothermal conditions. The structures and compositions of the compounds are determined by single-crystal X-ray diffraction (XRD) (CIF files ССDС nos. 2364290 (I) and 2364289 (II)) and confirmed by powder XRD, elemental analysis, thermogravimetry, and IR spectroscopy. Compound I has a 2D structure based on the heptanuclear discrete building unit {Cd7} with the linear structure. Compound II is a 3D MOF in which the {Cd7} building units are linked into a continuous chain motif due to additional interactions. The formation of discrete or continuous chains is directly related to the nature of the N-donor bridging ligand (Bpe or Bpa). Compounds I and II have open structures with the accessible volume about 50%. The solvate molecules are replaced by thiophene, benzene, and pyridine, and the luminescence properties of the prepared adducts are studied. Luminescence quenching in the presence of thiophene and an increase in the luminescence intensity in the presence of pyridine accompanied by a change in the quantum yield by 4–5 times are shown.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Dubskikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: dan@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Lysova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: dan@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
D. Samsonenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: dan@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
D. Dybtsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: dan@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
Bibliografia
- Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- Amooghin A.E., Sanaeepur H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 7427.
- Chen K., Mousavi S.H. et al. // Chem. Soc. Rev. 2022. V. 51. P. 1139.
- Shen Y., Tissot F., Serre C. // Chem. Sci. 2022. V. 13. P. 13978.
- Fang X., Zong, B., Mao, S. // Nano-Micro Lett. 2018. V. 10. P. 63.
- Sohrabi H., Ghasemzadeh S., Ghoreishi Z. et al. // Mater. Chem. Phys. 2023. V. 299. Р. 127512.
- Tranchemontagne D.J., Mendoza-Cortes J.L., O′Keeffe M. et al. // Chem. Soc. Rev. 2009. V. 38. P. 1257.
- Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
- Borsari M. // Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd., 2014. P. 1.
- Borsari M. // Encyclopedia of Inorganic Chemistry. John Wiley & Sons, Ltd., 2006. P. 1.
- Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2024. V. 26. P. 3077.
- Guo X.-Z., Chen S.-S. et al. // ACS Omega. 2019 V. 4. P. 11540.
- Guo Z., Cao R., Li. X. // Eur. J. Inorg. Chem. 2007. V. 5. P. 742.
- Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2022. V. 63. P. 1831.
- Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // J. Struct. Chem. 2020. V. 61. P. 1800.
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Crystal Research and Technology. 2020. V. 55. Р. 1900184.
- Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y. et al. // Crystals. 2017. V. 7. P. 325.
- Kabsch W. // XDS Acta Crystallogr. D. 2010. V. 66. P. 125.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281.
- Speck A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
- Yudina Y.A., Samsonova A.M., Bolotov V.A. et al. // J. Struct. Chem. 2021. V. 62. P. 1599.
- Einkauf J.D., Ortega R.E. et al. // New J. Chem. 2017. V.41. P. 10929.
- Zhao J., Wang X.-L., Shi X. et al. // Inorg. Chem. 2011. V. 50. P. 3198.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





