Heteroleptic ionic copper(I) complexes based on pyrazolo[1,5-a][1,10]phenanthrolines: synthesis, structure, and photoluminescence
- Autores: Vinogradova K.A.1, Rakhmanova M.I.1, Taigina M.D.1,2, Pervukhina N.V.1, Naumov D.Y.1, Sannikova V.A.3, Filippov I.R.2,3, Kolybalov D.S.2,4, Vorob’ev A.Y.2,3
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University (National Research University)
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
- Center for Collective Use, Siberian Ring Source of Photons (SKIF)
 
- Edição: Volume 50, Nº 12 (2024)
- Páginas: 869–880
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/676754
- DOI: https://doi.org/10.31857/S0132344X24120077
- EDN: https://elibrary.ru/LMCBXH
- ID: 676754
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Heteroleptic copper(I) tetrafluoroborate complexes with pyrazolo[1,5-a][1,10]phenanthrolines (Ln, n = 1–3) and bis[(2-diphenylphosphino)phenyl]ether (POP) were synthesized and structurally characterized. The coordination compounds with the general formula [CuLn(POP)]BF4 · Solv (n = 1, Solv = 0.5MeCN, complex I; n = 2, Solv = 0.5CH2Cl2, complex II; n = 3, Solv = 1.25Et2O, complex III · Et2O) were prepared by the reaction of CuBF4 with Ln and POP in organic solvents (MeCN/CH2Cl2/Et2O) at 1 : 1 : 1 molar ratio. Compound III · Et2O gradually loses solvate molecules to be converted to the complex [CuL3(POP)]BF4 (III). According to single-crystal X-ray diffraction data, the complexes (I, II, III · Et2O) are ionic; in complex cation [CuLn(POP)]+ the coordination environment of the copper atom is a distorted tetrahedron with CuN2P2 chromophore. The photoluminescence properties of the obtained complexes (I–III) were studied in the solid state and in solution. In the absorption spectra of the complexes, a charge transfer band is observed at 380–385 nm; excitation in this range gives rise to two emission bands at 480 and 650 nm in solution. In the solid state, the complexes show photoluminescence only in the red range (λmax = 600–610 nm) with microsecond lifetimes. It was found that complexes I and III with a more perfect tetrahedral environment have quantum yields an order of magnitude higher than the quantum yield observed for complex II.
Texto integral
 
												
	                        Sobre autores
K. Vinogradova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
M. Rakhmanova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
M. Taigina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University (National Research University)
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
N. Pervukhina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
D. Naumov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
V. Sannikova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
I. Filippov
Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
D. Kolybalov
Novosibirsk State University (National Research University); Center for Collective Use, Siberian Ring Source of Photons (SKIF)
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Koltsovo						
A. Vorob’ev
Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: kiossarin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
Bibliografia
- Li X., Xie Y., Li Z. // Chem. Asian J. 2021. V. 16. № 19. P. 2817.
- Yersin H. // Top. Curr. Chem. 2004. V. 241. P. 1.
- Czerwieniec R., Leitl M. J., Homeieret H. H.H. et al. // Coord. Chem. Rev. 2016. V. 325. P. 2.
- Yersin H., Rausch A. F., Czerwieniec R. et al. // Coord. Chem. Rev. 2011. V. 255. № 21–22. P. 2622.
- Li T.Y., Zheng S. J., Djurovich P. I. et al. // Chem. Rev. 2024. V. 124. P. 4332.
- Alsaeedi M. S. Current Topics and Emerging Issues in Chemical Science. Morocco: Faculty of Sciences, Sidi Mohamed Ben Abdellah University. V. 1. 2023. P. 104.
- Ma D. and Duan L. // Chem. Rec. 2019. V. 19. № 8. P. 1483.
- Hu Y.X., Xia X., He W. Z. et al. // Org. Electron. 2019. V. 66. P. 126.
- Li T.Y., Wu J., Wu Z. G. et al. // Coord. Chem. Rev. 2018. V. 374. P. 55.
- Monkman A. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 20463.
- Tanimoto S., Suzuki T., Nakanotani H. et al. // Chem Lett. 2016. V. 45. № 7. P. 770.
- Bergmann L., Zink D. M., Bräse S. et al. // Top. Curr. Chem. 2016. V. 374. № 3. Art 22.
- Patil V.V., Hong W. P., Lee J. Y. // Adv. Energy Mater. 2024. Р. 2400258.
- Yuan L., Zhang Y. P., Zheng Y. X. // Sci. China Chem. 2024. V. 67 № 4. P. 1097.
- Dumur F. // Org. Electronics. 2015. V. 21. P. 27.
- Sandoval-Pauker C., Santander-Nelli M., Dreyse P. // RSC Adv. 2022. V. 12. № 17. P. 10653.
- Mcmillin D.R., Mcnett K. M. // Chem. Rev. 1998. V. 98. № 3. P. 1201.
- Leoni E., Mohanraj J., Holler M. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15537.
- Holler M., Delavaux-Nicot B., Nierengarten J.F. // Chem. Eur. J. 2019. V. 25. № 18. P. 4543.
- Armaroli N. // Chem Soc. Rev. 2001. V. 30. № 2. P. 113.
- Lavie-Cambot A., Cantuel M., Leydet Y. et al. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2572.
- Accorsi G., Listorti A., Yoosaf K. et al. // Chem Soc Rev. 2009. Vol. 38, № 6. P. 1690.
- Miao H., Wang P., Huang Z. et al. // Struct. Chem. 2023.V. 34. № 6. Р. 2307.
- Zhang X., Wu Z., Xu J. Y. et al. // Polyhedron. 2021. V. 202. P. 115197.
- Toigo J., Farias G., Salla C. A.M. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 31. P. 3177.
- Li C., MacKenzie C.F.R., Said S.A. et al. // Inorg. Chem. 2021. V. 60. № 14. P. 10323.
- Jin X.X., Li T., Shi D. P. et al. // New J. Chem. 2020. V. 44. № 31. P. 13393.
- Sannikova V.A., Filippov I. R., Karmatskikh O. Y. et al. // Chem. Heterocycl. Compd. 2020. V. 56. № 8. P. 1042.
- Malakhova J.A., Berezin A. S., Glebov E. M. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121604.
- Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Analyt. Chem. 2008. V. 63. № 11. P. 1094.
- APEX2 (version 1.08), SAINT (version 7.03), and SADABS (version 2.11). Bruker AXS Inc., 2004.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
- Cuttell D.G., Kuang S.M., Fanwick P.E. et al. // J. Am. Chem. Soc. 2002. V. 124. № 1. P. 6.
- Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955.
- Allen F.H., Kennard O., Watson D.G. // Perkin Trans. 1987. № 12. P. S1.
- Zheng D., Tong Q. // Russ. J. Phys. Chem. A. 023. V. 97. № 13. P. 2942.
- Kuang X.N., Lin S., Liu J.M. et al. // Polyhedron. 2019. V. 165. P. 51.
- Wang Y.P., Hu X.H., Wang Y.F. et al. // Polyhedron. 2015. V. 102. P. 782.
- Si Z., Li X., Li X. et al. // Inorg. Chem. Commun. 2009. V. 12. № 10. P. 1016.
- Smith C.S., Branham C.W., Marquardt B.J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 40. P. 14079.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









