Оптимизация синтеза солей [V10O28]6– для получения [VO2(DMSO)4](CF3SO3) и нанесение его на ПЭТ для каталитических приложений
- Авторы: Абрамов П.А.1, Компаньков Н.Б.1, Суляева В.С.1, Соколов М.Н.1
-
Учреждения:
- Институт неорганической химии им. А. В. Николаева СО РАН
- Выпуск: Том 50, № 12 (2024)
- Страницы: 809-817
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0132-344X/article/view/676738
- DOI: https://doi.org/10.31857/S0132344X24120017
- EDN: https://elibrary.ru/LMIEVQ
- ID: 676738
Цитировать
Аннотация
Рассмотрены аспекты получения (Bu4N)3[H3V10O28] (I) и Na6[V10O28] · 18H2O (II) из одной реакционной смеси. Оптимизирована методика синтеза I. В результате взаимодействия I и HSO3CF3 в диметилсульфоксиде получен комплекс [VO2(DMSO)4](CF3SO3) (III). Показана возможность использования III для получения каталитически активных материалов на основе полиэтилентерефталата (ПЭТ).
Ключевые слова
Полный текст

Об авторах
П. А. Абрамов
Институт неорганической химии им. А. В. Николаева СО РАН
Автор, ответственный за переписку.
Email: abramov@niic.nsc.ru
Россия, Новосибирск
Н. Б. Компаньков
Институт неорганической химии им. А. В. Николаева СО РАН
Email: abramov@niic.nsc.ru
Россия, Новосибирск
В. С. Суляева
Институт неорганической химии им. А. В. Николаева СО РАН
Email: abramov@niic.nsc.ru
Россия, Новосибирск
М. Н. Соколов
Институт неорганической химии им. А. В. Николаева СО РАН
Email: abramov@niic.nsc.ru
Россия, Новосибирск
Список литературы
- Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. https://www.springer.com/gp/book/9783662120064 (accessed September 21, 2017)
- Kozhevnikov I.V. // Polyoxometal. Mol. Sci. 2003. V. 98. P. 351.
- Kozhevnikov I.., Kloetstra K.., Sinnema A. et al. // J. Mol. Catal. A. 1996. V. 114. № 1–3. P. 287. https://doi.org/10.1016/S1381-1169(96)00328-7
- Johnson H.N., Kirkbright G.F., Whitehouse R.J. // Anal. Chem. 1973. V. 45. № 9. P. 1603. https://doi.org/10.1021/ac60331a032
- Dubovik D.B., Tikhomirova T.I., Ivanov A.V. et al. // J. Anal. Chem. 2003. V. 58. P. 802. https://doi.org/10.1023/A:1025672831189
- Negrin A. // Clin. Chem. 1969. V. 15. № 9. P. 829. https://doi.org/10.1093/clinchem/15.9.829
- Scott J.E. // J. Histochem. Cytochem. 1971. V. 19. № 11. P. 689. https://doi.org/10.1177/19.11.689
- Sternberg M.Z. // Biotechnol. Bioeng. 1970. V. 12. № 1. P. 1. https://doi.org/10.1002/bit.260120102
- Yamase T. // Mol. Eng. 1993. V. 3. № 1–3. P. 241. https://doi.org/10.1007/BF00999636
- Raza R., Matin A., Sarwar S. et al. // Dalton Trans. 2012. V. 41. № 47. P. 14329. https://doi.org/10.1039/c2dt31784b
- Moore F.W., Tsigdinos G.A. // J. Less Common Met. 1977. V. 54. № 1. P. 297. https://doi.org/10.1016/0022-5088(77)90151-5
- Tsigdinos G.A. // Top. Curr. Chem. 1978. p. 14. https://doi.org/10.1007/BFb0047026
- Miras H.N., Cooper G.J.T., Long D.-L. et al. // Science.. 2010. V. 327. № 5961. P. 72. https://doi.org/10.1126/science.1181735
- Christie L.G., Surman A.J., Scullion R.A. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 41. P. 12741. https://doi.org/10.1002/anie.201606005
- Müller A., Kögerler P., Dress A.W.M.W.M. // Coord. Chem. Rev. 2001. V. 222. № 1. P. 193. https://doi.org/10.1016/S0010-8545(01)00391-5
- Lian X.-K., Chen H.-B., Lin Y.-D. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215440. https://doi.org/10.1016/j.ccr.2023.215440
- Lv W., Han S.-D., Li X.-Y. et al. // Coord. Chem. Rev. 2023. V. 495. P. 215376. https://doi.org/10.1016/j.ccr.2023.215376
- Granadeiro C.M., Julião D., Ribeiro S.O. et al. // Coord. Chem. Rev. 2023. V. 476. P. 214914. https://doi.org/10.1016/j.ccr.2022.214914
- Zhang H., Li A., Li K. et al. // Nature. 2023. V. 616. № 7957. P. 482. https://doi.org/10.1038/s41586-023-05840-z
- Nyman M., Deblonde G. // Nature. 2023. V. 616. № 7957. P. 438. https://doi.org/10.1038/d415860023001019-8
- Liu C., Zhang Z., Liu W. et al. // Green Energy Environ. 2017. V. 2. № 4. P. 436. https://doi.org/10.1016/j.gee.2016.12.003
- Cai X., Xu Q., Tu G. et al. // Front. Chem. 2019. V. 7:42.? https://doi.org/10.3389/fchem.2019.00042
- Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. № 42. P. 16839. https://doi.org/10.1021/ja203695h
- Monakhov K.Y., Bensch W., Kögerler P. // Chem. Soc. Rev. 2015. V. 44. № 23. https://doi.org/10.1039/C5CS00531K
- Wendt M., Warzok U., Näther C. et al. // Chem. Sci. 2016. V. 7. № 4. P. 2684. https://doi.org/10.1039/C5SC04571A
- Ma P., Hu F., Wang J. et al. // Coord. Chem. Rev. 2018. V. 378. P. 281. https://doi.org/10.1016/J.CCR.2018.02.010
- Aureliano M., Gumerova N.I., Sciortino G. et al. // Coord. Chem. Rev. 2021. V. 447. P. 214143. https://doi.org/10.1016/j.ccr.2021.214143
- Wang J., Liu X., Du Z. et al. // Dalton Trans. 2021. V. 50. № 23. P. 7871. https://doi.org/10.1039/D1DT00494H
- Li J., Zhang D., Chi Y. et al. // Polyoxometalates. 2022. V. 1. № 2. P. 9140012. https://doi.org/10.26599/POM.2022.9140012
- Anjass M., Lowe G.A., Streb C. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7522. https://doi.org/10.1002/anie.202010577
- Fraqueza G., Aureliano M. // BiTaP MDPI. 2022, p. 8 https://doi.org/10.3390/BiTaP-12844
- Shuvaeva O. V., Zhdanov A.A., Romanova T.E. et al. // Dalton Trans. 2017. V. 46. № 11. P. 3541. https://doi.org/10.1039/C6DT04843A
- Volchek V. V., Kompankov N.B., Sokolov M.N. et al. // Molecules. 2022. V. 27. № 23. P. 8368. https://doi.org/10.3390/molecules27238368
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Klemperer W.G. // Inorg. Synth. 1990. p. 74. https://doi.org/10.1002/9780470132586.ch15
- Domaille P.J. // J. Am. Chem. Soc. 1984. V. 106. № 25. P. 7677. https://doi.org/10.1021/ja00337a004
- Durif A., Averbuch-Pouchot M.T., Guitel J.C. // Acta Crystallogr. B. 1980. V. 36. № 3. P. 680. https://doi.org/10.1107/S0567740880004116
- Bošnjaković-Pavlović N., Prévost J., Spasojević-de Biré A. // Cryst. Growth Des. 2011. V. 11. № 9. P. 3778. https://doi.org/10.1021/cg200236d
- Krakowiak J., Lundberg D., Persson I. // Inorg. Chem. 2012. V. 51. № 18. P. 9598. https://doi.org/10.1021/ic300202f
- Guselnikova O., Svanda J., Postnikov P. et al. // Adv. Mater. Interfaces. 2017. V. 4. № 5. https://doi.org/10.1002/admi.201600886
- Guselnikova O., Elashnikov R., Postnikov P. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 43. P. 37461. https://doi.org/10.1021/acsami.8b06840
- Guselnikova O., Barras A., Addad A. et al. // Sep. Purif. Technol. 2020. V. 240. P. 116627. https://doi.org/10.1016/j.seppur.2020.116627
- Guselnikova O., Semyonov O., Kirgina M. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 2. P. 107105. https://doi.org/10.1016/j.jece.2021.107105
- Semyonov O., Chaemchuen S., Ivanov A. et al. // Appl. Mater. Today. 2021. V. 22. P. 100910. https://doi.org/10.1016/j.apmt.2020.100910
- Kogolev D., Semyonov O., Metalnikova N. et al. // J. Mater. Chem. A. 2023. V. 11. № 3. P. 1108. https://doi.org/10.1039/D2TA08127J
- 48. Guselnikova O., Semyonov O., Sviridova E. et al. // Chem. Soc. Rev. 2023. V. 52. № 14. P. 4755. https://doi.org/10.1039/D2CS00689H
- Licini G., Conte V., Coletti A. et al. // Coord. Chem. Rev. 2011. V. 255. № 19–20. P. 2345. https://doi.org/10.1016/j.ccr.2011.05.004
- Langeslay R.R., Kaphan D.M., Marshall C.L. et al. // Chem. Rev. 2019. V. 119. № 4. P. 2128. https://doi.org/10.1021/acs.chemrev.8b00245
- Maksimchuk N. V., Kholdeeva O.A., Kovalenko K.A. et al. // Isr. J. Chem. 2011. V. 51. № 2. P. 281. https://doi.org/10.1002/ijch.201000082
- Evtushok V.Y., Suboch A.N., Podyacheva O.Y. et al. // ACS Catal. 2018. V. 8. № 2. P. 1297. https://doi.org/10.1021/acscatal.7b03933
- Rodikova Y.A., Zhizhina E.G., Pai Z.P. // Appl. Catal. A. 2018. V. 549. P. 216. https://doi.org/10.1016/j.apcata.2017.09.022
- Palion-Gazda J., Luz A., Raposo L.R. et al. // Molecules. 2021. V. 26. № 21. P. 6364. https://doi.org/10.3390/molecules26216364
- Zhao L., Yang P., Shi S. et al. // ACS Catal. 2022. V. 12. № 24. P. 15249. https://doi.org/10.1021/acscatal.2c04601
- Kikukawa Y., Sakamoto Y., Hirasawa H. et al. // Catal. Sci. Technol. 2022. V. 12. № 8. P. 2438. https://doi.org/10.1039/D1CY02103F
- Fomenko I.S., Gushchin A.L., Abramov P.A. et al. // Catalysts. 2019. V. 9. № 3.
Дополнительные файлы
