Layered Coordination Polymers Based on the Cluster Complexes [Re6Q8(CN)6]4– (Q = S or Se) and Dimeric Cations {(Ag(Dppe))2(μ-Dppe)}2+

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reactions of salts of cluster anions [Re6Q8(CN)6]4– with the [Ag(CN)2] dicyanoargentate anion in the presence of 1,2-bis(diphenylphosphino)ethane are studied. Two new coordination polymers, [{(Ag(Dppe))2 (µ-Dppe)}2{Re6S8(CN)6}]⋅H2O (I) and [{(Ag(Dppe))2(µ-Dppe)}2{Re6Se8(CN)6}]0,85[{(Ag(Dppe))(Ag(DppeSe))(µ-Dppe)}2{Re6Se8(CN)6}]0,15 (II), are prepared by the solvothermal synthesis. The XRD study of single crystals of the compounds (CIF files CCDC nos. 2341356 (I) and 2341355 (II)) shows their layered structures. The XRD study of crystalline powders of the compounds shows that the synthesis of compound II leads to the formation of two crystalline phases, one of which is isostructural to compound I. The luminescence parameters of the solid-state compounds (quantum yields, emission lifetimes) resemble the parameters of other coordination polymers based on the [Re6Q8(CN)6]4– ions.

全文:

受限制的访问

作者简介

Yu. Litvinova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
俄罗斯联邦, Novosibirsk

Ya. Gaifulin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
俄罗斯联邦, Novosibirsk

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
俄罗斯联邦, Novosibirsk

K. Brylev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
俄罗斯联邦, Novosibirsk

Yu. Mironov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yuri@niic.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Sheldon J.C. // J. Chemi. Soc. (Resumed). 1962. P. 410.
  2. McCarley R.E. // Brown T.M., Inorg. Chem. 1964. Vol. 3. № 9. P. 1232.
  3. Kuhn P.J., McCarley R.E. // Inorg. Chem. 1965. Vol. 4. № 10. P. 1482.
  4. Spangenberg M. Bronger W. //Angew. Chem. Int. Ed. 1978. Vol. 17. № 5. P. 368.
  5. Robin M., Dumait N., Amela-Cortes M., et al. // Chem. Eur. J. 2018. Vol. 24. № 19. P. 4825.
  6. Sokolov M.N., Brylev K.A., Abramov P.A., et al. // Eur. J. Inorg. Chem. 2017. Vol. 2017. № 35. P. 4131.
  7. Muravieva V.K., Gayfulin Y.M., Ryzhikov M.R., et al. // Dalton Trans. 2018. Vol. 47. № 10. P. 3366.
  8. Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. Vol. 500. №, P. 215543.
  9. Kirakci K., Shestopalov M.A., Lang K. // Coord. Chem. Rev. 2023. Vol. 481. P. 215048.
  10. Nguyen N.T.K., Lebastard C., Wilmet M., et al. // Sci.Technol. Adv. Mater. 2022. Vol. 23. № 1. P. 547.
  11. Yoshimura T., Ishizaka S., Sasaki Y., et al. // Chem. Lett. 1999. Vol. 28. № 10. P. 1121.
  12. Ларина Т.В., Икорский В.Н., Васенин Н.Т. и др. // Коорд. химия. 2002. Т. 28. № 8. С. 591.
  13. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A., et al. // Inorg. Chem. 2018. Vol. 57. № 4. P. 2072.
  14. Litvinova Y.M., Gayfulin Y.M., Van Leusen J., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 6. P. 1518.
  15. Ulantikov A.A., Gayfulin Y.M., Sukhikh T.S., et al. // J. Struct. Chem. Engl. Tr. 2021. Vol. 62. № 7. P. 1009.
  16. Naumov N.G., Virovets A.V., Sokolov M.N., et al. // Angew. Chem. Int. Ed. 1998. Vol. 37. № 13-14. P. 1943.
  17. Naumov N.G., Virovets A.V., Artemkina S.B., et al. // J. Solid State Chem. 2004. Vol. 177. № 6. P. 1896.
  18. Artemkina S.B., Naumov N.G., Virovets A.V., et al. // Inorg. Chem. Commun. 2001. Vol. 4. № 8. P. 423.
  19. Niu G.-H., Wentz H.C., Zheng S.-L., Campbell. M.G. // Inorg. Chem. Commun. 2019. Vol. 101. P. 142.
  20. Medici S., Peana M., Crisponi G., et al. // Coord. Chem. Rev. 2016. Vol. 327−328. P. 349.
  21. Hamze R., Shi S., Kapper S.C., et al. // J. Am. Chem. Soc. 2019. Vol. 141. № 21. P. 8616.
  22. Kakizoe D., Nishikawa M., Degawa T., Tsubomura T. // Inorg. Chem. Front. 2016. Vol. 3. № 11. P. 1381.
  23. Romanov A.S., Jones S.T.E., Yang L., et al. // Adv. Opt. Mate. 2018. Vol. 6. № 24. P. 1801347.
  24. Lin Y.-Y., Lai S.-W., Che C.-M., et al. // Inorg. Chem. 2005. Vol. 44. № 5. P. 1511.
  25. Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. Vol. 54. № 3. P. 746.
  26. Wing-Wah Yam V., Kam-Wing Lo. K., et al. // Coord. Chem. Rev. 1998. Vol. 171. P. 17.
  27. Tsukuda T., Kawase M., Dairiki A., et al. // Chem. Commun. 2010. Vol. 46. № 11. P. 1905.
  28. Chen J., Teng T., Kang L., et al. // Inorg. Chem. 2016. Vol. 55. № 19. P. 9528.
  29. Osawa M., Hashimoto M., Kawata I., Hoshino M. // Dalton Trans. 2017. Vol. 46. № 37. P. 12446.
  30. Artem’ev A.V., Shafikov M.Z., Schinabeck A., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 11. P. 3168-3176.
  31. Litvinova Y.M., Gayfulin Y.M., Sukhikh T.S., et al. // Molecules. 2022. Vol. 27. № 22. P. 7684.
  32. Naumov N.G., Virovets A.V., Podberezskaya N.V., Federov V.E. // Zh. Strukt. Khim. 1997. № 5. P. 1018.
  33. Mironov Y.V., Virovets A.V., Fedorov V.E., et al. // Polyhedron. 1995. Vol. 14. № 20. P. 3171.
  34. Sheldrick G.M. et al. // Acta Crystallogr. A. 2015. Vol. 71. P. 3.
  35. Sheldrick G. et al. // Acta Crystallogr. C. 2015. Vol. 71. № 1. P. 3.
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J., et al. // Appl. Crystallogr. 2009. Vol. 42. № 2. P. 339.
  37. Zhao Q., Freeman J.L., Wang J., et al. // Inorg. Chem. 2012. Vol. 51. № 4. P. 2016.
  38. Canales S., Villacampa M.D., Laguna A., Gimeno M.C. // J. Organomet. Chem. 2014. Vol. 760. P. 84.
  39. Sekar P., Ibers J.A., et al. // Inorg. Chim. Acta. 2001. Vol. 319. № 1. P. 117.
  40. Effendy, Di Nicola C., Nitiatmodjo M., et al. // Inorg. Chim. Acta. 2005. Vol. 358. № 3. P. 73547.
  41. Huahui Y., Lansun Z., Yunjie X., Qianer Z. // Chin. J. Inorg. Chem. 1992. Vol. 8. №, P. 65.
  42. Fournier E., Sicard S., Decken A., Harvey. P.D. // Inorg. Chem. 2004. Vol. 43. № 4. P. 1491.
  43. Wang Y.-F., Cui Y.-Z., Li Z.-F., et al. // Chin. J. Struct. Chem. 2017. Vol. 36. P. 812.
  44. Zhang Y.-R., Wang M.-Q., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2015. Vol. 31. P. 2089.
  45. Wei X., Xu C., Li H., et al. // Chem. Sci. 2022. Vol. 13. № 19. P. 5531.
  46. Gao S., Li Z.-F., Liu M., et al. // Polyhedron. 2014. Vol. 83. P. 10.
  47. Harker C.S.W., Tiekink E.R.T. // J. Coord. Chem. 1990. Vol. 21. № 4. P. 287.
  48. Healy P.C., Loughrey B.T., Williams M.L. // Aust. J. Chem. 2012. Vol. 65. P. 811.
  49. Lin S., Li. Y., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2016. Vol. 32. P. 2165.
  50. Chee C.F., Lo K.M., Ng S.W. // Acta Crystallogr. E. 2003. Vol. 59. № 5. P. m273.
  51. Teo Y.Y., Lo. K., Ng S. // Acta Crystallogr. E. 2008. Vol. 64. P. m819.
  52. Teo Y.Y., Lo K., Ng. S. // Acta Crystallogr. E. 2007. Vol. 63. №, P. M1365-M1367.
  53. Shafaei-Fallah M., Anson C.E., Fenske D., Rothenberger A. // Dalton Trans. 2005. Vol., № 13. P. 2300.
  54. Kühnert J., Hahn H., Rüffer T., et al. // J. Organomet. Chem. 2013. Vol. 725. P. 60.
  55. Li L.-L., Ren Z.-G., Wang J., et al. // J. Mol. Struct. 2008. Vol. 886. № 1. P. 121.
  56. Wang X.-J., Langetepe T., Fenske D., Kang. B.-S. // Z. Anorg. Allg. Chem. 2002. Vol. 628. № 5. P. 1158.
  57. Effendy, di Nicola C., Pettinari C., Pizzabiocca A., et al. // Inorg. Chim. Acta. 2006. Vol. 359. № 1. P. 64.
  58. Teo P., Koh L.L., Hor T.S.A. // Chem. Commun. 2007. Vol., № 41. P. 4221.
  59. Deng L.-R., Wang X.-J., Xiao W., et al. // Chem. Res. Chin. Univ. 2000. № 4. P. 375.
  60. Aslanidis P., Cox P.J., Divanidis S., Karagiannidis P. // Inorg. Chim. Acta. 2004. Vol. 357. № 9. P. 2677.
  61. Jin Q.-H., Yuan Y., Yang Y.-P., et al. // Polyhedron. 2015. Vol. 101. P. 56.
  62. Crespo O., Gimeno M.C., Laguna A., et al. // Dalton Trans. 2014. Vol. 43. № 32. P. 12214.
  63. Fenske D., Rothenberger A., Shafaei Fallah M. // Eur. J. Inorg. Chem. 2005. Vol. 2005. № 1. P. 59.
  64. Zhang L., Lü X.-Q., Zhang Q., et al. // Trans. Met. Chem. 2005. Vol. 30. № 1. P. 76.
  65. Dennehy M., Quinzani O.V., Mandolesi S.D., Burrow R.A. // J. Mol. Struct. 2011. Vol. 998. № 1. P. 119.
  66. Yang X., Isaac I., Persau C., et al. // Inorg. Chim. Acta. 2014. Vol. 421. P. 233.
  67. Mingsheng H., Peng Z., Ying Z., et al. // Acta Phys. Chim. Sin. 1991. Vol. 7. P. 694.
  68. Shawkataly O.B., Sani N.F.A., Rosli M.M., Razali M.R. // Z. Anorg. Allg. Chem. 2016. Vol. 642. № 5. P. 419.
  69. Gray T.G., Rudzinski C.M., Meyer E.E., et al. // J. Am. Chem. Soc. 2003. Vol. 125. № 16. P. 4755.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Fragment of the structure of compound I with numbering of symmetrically independent atoms (thermal ellipsoids of 75% probability are given, hydrogen atoms are not shown)

下载 (365KB)
3. Fig. 2. Coordination environment of Ag(1), Ag(2), Ag(4) and Ag(5) atoms

下载 (99KB)
4. Fig. 3. Structure of the dimeric fragment [{Ag(Dppe)}2µ-Dppe]2+ in compound I. Hydrogen atoms as well as phenyl rings of the bridging molecule Dppe are not shown

下载 (179KB)
5. Fig. 4. Fragment of the layered structure of compound I. S atoms, Dppe phenyl ring molecules and H2O solvate molecules are not shown

下载 (334KB)
6. Fig. 5. Independent fragment of the structure of compound II with numbering of heavy symmetrically independent atoms showing the ligands Dppe (a) and DppeSe (b) coordinated to the disordered Ag(2) (a) or Ag(2B) (b) atom, respectively. Thermal ellipsoids of 75% probability are given. Hydrogen atoms are not shown

下载 (886KB)
7. Fig. 6. Coordination environment of Ag(1), Ag(2A) and Ag(2B) atoms in compound II

下载 (117KB)
8. Fig. 7. Structure of the dimeric fragment {(Ag(Dppe))2(µ-Dppe)}2+ in compound II. Hydrogen atoms are not shown

下载 (197KB)
9. Fig. 8. Fragment of the layered structure of compound II. Se atoms, phenyl rings of Dppe molecules and hydrogen atoms are not shown

下载 (308KB)
10. Fig. 9. Experimental powder diffractogram of compound I in a polycrystalline sample (bottom) in comparison with the calculated one based on the structure of a single crystal (top)

下载 (62KB)
11. Fig. 10. Experimental powder diffractogram of compound II in a polycrystalline sample (bottom) in comparison with the calculated structures of single crystals of compounds I (top, solid line) and II (top, dotted line)

下载 (68KB)
12. Fig. 11. Photoluminescence spectra of compounds I and II

下载 (80KB)

版权所有 © Российская академия наук, 2024