Argon Radiation Behind a Strong Shock Wave: Experiment and Direct Simulation by the Monte Carlo Method
- Authors: Kozlov P.V.1, Kusov A.L.1, Bykov N.G.1, Zabelinskii I.E.1, Levashov V.Y.1, Gerasimov G.Y.1
- 
							Affiliations: 
							- Institute of Mechanics, Moscow State University
 
- Issue: Vol 42, No 4 (2023)
- Pages: 57-63
- Section: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/674879
- DOI: https://doi.org/10.31857/S0207401X23040106
- EDN: https://elibrary.ru/MXCLGM
- ID: 674879
Cite item
Abstract
The radiation characteristics of shock-heated argon are measured in the shock-wave velocity range of 4.5 to 7.8 km/s at gas pressures ahead of the shock wave front of 0.25, 1.0, and 5.0 Torr. Time-integrated sweeps of radiation and the time dependences of the radiation intensity of shock-heated argon at the wavelength of 420 nm are obtained in absolute units. The results of direct statistical simulation by the Monte Carlo method of radiation-chemical processes in the argon behind the front of a strong shock wave are presented. The model takes into account the processes of excitation and ionization of an atom by electron impact, emission and absorption for a discrete spectrum, bremsstrahlung, photoionization, and photorecombination, as well as the broadening of atomic lines. The experimental and calculated data are compared.
Keywords
About the authors
P. V. Kozlov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
A. L. Kusov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
N. G. Bykov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
I. E. Zabelinskii
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
V. Yu. Levashov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
G. Ya. Gerasimov
Institute of Mechanics, Moscow State University
							Author for correspondence.
							Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
References
- Surzhikov S. // AIAA Paper. 2017. № 2017-1147.
- Park C. Nonequilibrium Hypersonic Aerothermodynamics. N.Y.: Wiley, 1990.
- Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48.
- Johnston C.O., Brandis A.M. // J. Spacecr. Rockets. 2015. V. 52. P. 105.
- Суржиков С.Т. Компьютерная аэрофизика спускаемых космических аппаратов. Двухмерные модели. М.: Физматлит, 2018.
- Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transfer. 2016. V. 30. P. 197.
- Kano K., Suzuki M., Akatsuka H. // Plasma Sources Sci. Technol. 2000. V. 9. P. 314.
- Kapper M.G., Cambier J.-L. // J. Appl. Phys. 2011. V. 109. № 113308.
- Abrantes R.J.E., Karagozian A.R., Bilyeu D., Le H.P. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 47.
- Evdokimov K.E., Konischev M.E., Pichugin V.F., Sun Z. // Resour.-Effic. Technol. 2017. V. 3. P. 187.
- Chai K.-B., Kwon D.-H. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 136.
- Dzierżęga K., Zawadzki W., Sobczuk F. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 237. № 106635.
- Sun J.-H., Sun S.-R., Zhang L.-H., Wang H.-X. // Plasma Chem. Plasma Process. 2020. V. 40. P. 1383.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2021. Т. 40. № 12. С. 23.
- Забелинский И.Е., Козлов П.В., Акимов Ю.В. и др. // Хим. физика. 2021. Т. 40. № 11. С. 22.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26.
- Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
- Mewes D., Mayinger F. // Rarefied Gas Dynamics. Heat and Mass Transfer. Berlin: Springer, 2005. P. 275.
- Кусов А.Л. // Мат. моделирование. 2015. Т. 27. № 12. С. 33.
- Titarev V.A., Frolova A.A., Rykov V.A. et al. // J. Comput. Appl. Math. 2020. V. 364. № 112354.
- Beyer J., Pfeiffer M., Fasoulas S. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. № 108083.
- Кусов А.Л., Левашов В.Ю., Герасимов Г.Я. др. // Физ.-хим. кинетика в газ. динамике. 2020. Т. 21. № 2. С. 1.
- Zatsarinny O., Bartschat K. // J. Phys. B. 2004. V. 37. № 23. P. 4693.
- Zatsarinny O., Wang Y., Bartschat K. // Phys. Rev. A. 2014. V. 89. 022706.
- Hoshino M., Murai H., Kato H. et al. // Chem. Phys. Lett. 2013. V. 585. P. 33.
- Filipović D.M., Marinković B.P., Pejčev V., Vušković L. // J. Phys. B. 2000. V. 33. № 11. P. 2081.
- Бай Ши-и. Динамика излучающего газа. М.: Мир, 1968.
- Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008.
- Jung Y.-D., Kim C.-G. // J. Plasma Phys. 2002. V. 67. P. 191.
- Левашов В.Ю., Козлов П.В., Быкова Н.Г., Забелинский И.Е. // Хим. физика. 2021. Т. 40. № 1. С. 16.
- Collen P.L., Doherty L.J., McGilvray M. // Intern. Conf. FAR-2019. 2019. № 1053360.
- Bristow M.P.F. // UTIAS. Tech. Rep. № 158. 1971.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					






