Heterocyclic molecules fragmentation due to single electron capture by doubly charged ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.

Full Text

Restricted Access

About the authors

A. A. Basalaev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

V. V. Kuz’michev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

M. N. Panov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

K. V. Simon

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

O. V. Smirnov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Russian Federation, Saint Petersburg

References

  1. H.-W. Jochims, M. Schwell, H. Baumgärtel et al., Chem. Phys., 314, 263 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
  2. S. Pilling, A. F. Lago, L. H. Coutinho et al., Rapid Commun. Mass Spectrom., 21, 3646 (2007). https://doi.org/10.1002/rcm.3259
  3. D. Barreiro-Lage, P. Bolognesi, J. Chiarinelli et al., J. Phys. Chem. Lett., 12, 7379 (2021). https://doi.org/10.1021/acs.jpclett.1c01788
  4. J.D. Chiarinelli, D. Barreiro-Lage, P. Bolognesi et al., Phys. Chem. Chem. Phys., 24, 5855 (2022). https://doi.org/10.1039/D1CP05811H
  5. D. Barreiro-Lage, J. Chiarinelli, P. Bolognesi et al., Phys. Chem. Chem. Phys., 25, 15635 (2023). https://doi.org/10.1039/D3CP00608E
  6. S. Feil, K. Gluch, S. Matt-Leubner et al., J. Phys. B: At. Mol. Opt. Phys., 37, 3013 (2004). https://doi.org/10.1088/0953-4075/37/15/001
  7. M.M. Dawley, K. Tanzer, W.A. Cantrell et al., Phys. Chem. Chem. Phys., 16, 25039 (2014). https://doi.org/10.1039/C4CP03452J
  8. P.J. M. van der Burgt, S. Finnegan, S. Eden. Eur. Phys. J. D., 69, 173 (2015). https://doi.org/10.1140/epjd/e2015-60200-y
  9. B. Li, X. Ma, X. L. Zhu et al., J. Phys. B: At. Mol. Opt. Phys., 42, 075204 (2009). https://doi.org/10.1088/0953-4075/42/7/075204
  10. J. de Vries, R. Hoekstra, R. Morgenstern et al., J. Phys. B: At. Mol. Opt., Phys., 35, 4373 (2002). https://doi.org/10.1088/0953-4075/35/21/304
  11. J. Tabet, S. Eden, S. Feil et al., Int. J. Mass Spectr., 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
  12. V.V. Afrosimov, A.A. Basalaev, O.S. Vasyutinskii et al., Eur. Phys. J. D, 69, 3 (2015). https://doi.org/10.1140/epjd/e2014-50435-5
  13. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys. Lett., 48 (9), 11 (2022). https://doi.org/10.21883/TPL.2022.09.55073.19238
  14. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Radiat. Phys. Chem., 193, 109984 (2022). https://doi.org/10.1016/j.radphyschem.2022.109984
  15. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys., 67 (7), 812 (2022). https://doi.org/10.21883/TP.2022.07.54477.309-21
  16. G.M.J. Barca, C. Bertoni, L. Carrington et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
  17. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 15, 782 (2021). https://doi.org/10.1134/S1990793121050134
  18. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
  19. G.M. Khrapkovskii, I.V. Aristov, D.L. Egorov et al., Rus. J. Phys. Chem. B,. 16, 862 (2022). https://doi.org/10.1134/S1990793122040066
  20. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Rus. J. Phys. Chem. B, 17, 1025 (2023) https://doi.org/10.1134/S1990793123050172
  21. N.S. Hush, A.S. Cheung. Chem. Phys. Lett., 34, 11 (1975).
  22. C.T. Hwang, C.L. Stumpf, Y.-Q. Yu et al., Int. J. Mass Spectrom., 182/183. 253 (1999).
  23. N. Russo, M. Toscano, A. Grand. J. Comput. Chem., 21, 1243 (2000).
  24. R. Improta, G. Scalmani, V. Barone, Int. J. Mass Spectrom., 201, 321 (2000).
  25. R.K. Janev, L.P. Presnyakov, Phys. Rep., 70, 1 (1981) https://doi.org/10.1016/0370-1573(81)90161-7
  26. J. Lin, C.Yu, S. Peng, I. Akiyama et al., J. Am. Chem. Soc.. 102, 4627 (1980).
  27. A.B. Trofimov, J. Schirmer, V.B. Kobychev et al., J. Phys. B: At. Mol. Opt. Phys. 39, 305 (2006). https://doi.org/10.1088/0953-4075/39/2/007
  28. A.P. W. Arachchilage, F. Wang, V. Feyer et al., J. Chem. Phys., 133, 174319 (2010). https://doi.org/10.1063/1.3499740
  29. J. Franz, F. A. Gianturco, Eur. Phys. J. D, 68, 279 (2014). https://doi.org/10.1140/epjd/e2014-50072-0
  30. A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (ver. 5.9). (2021). https://doi.org/10.18434/T4W30F

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mass spectra of fragment ions formed in the processes of one electron capture from Ade molecules by C2+, He2+, O2+ ions. The inset shows the structural formula of the Ade molecule.

Download (170KB)
3. Fig. 2. Stationary points along the fragmentation path with successive cleavage of the C5–C6 and C2–N3 bonds in the six-membered cycle of the Ade+ ion. The energy reference point is the total energy of the Ade+ cation in the optimal geometry of the neutral molecule.

Download (142KB)
4. Fig. 3. Mass spectra of fragment ions formed in the processes of one electron capture from DKP molecules by C2+, He2+, O2+ ions. The inset shows the structural formula of the DKP molecule).

Download (157KB)
5. Fig. 4. Stationary points along the fragmentation path of the DKP+ ion with the formation of fragment ions with masses of 86 and 30 amu. The starting point is the total energy of the DKP+ cation in the optimal geometry of the neutral molecule.

Download (147KB)
6. Fig. 5. Stationary points along the fragmentation path of the DKP+ ion with the formation of fragment ions with a mass of 30 amu upon cleavage of the C3–C4 and C2–N1 bonds. The starting point is the total energy of the DKP+ cation in the optimal geometry of the neutral molecule.

Download (110KB)
7. Fig. 6. Stationary points along the fragmentation path of the DKP+ ion, which in the initial state has a vacancy localization on the C1–C2 chemical bond, with the formation of fragment ions with a mass of 71 amu upon breaking of the C1–C2 and N1–C3 bonds. The starting point is the total energy of the DKP+ cation in the optimal geometry of the neutral molecule.

Download (116KB)

Copyright (c) 2024 Russian Academy of Sciences