Structural features of polylactide and natural rubber films produced by solution casting
- Авторлар: Tertyshnaya Y.V.1,2, Podzorova M.V.1,2, Karpova S.G.1, Krivandin A.V.1
- 
							Мекемелер: 
							- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
- Plekhanov Russian University of Economics
 
- Шығарылым: Том 43, № 4 (2024)
- Беттер: 110-118
- Бөлім: Chemical physics of polymeric materials
- URL: https://cardiosomatics.ru/0207-401X/article/view/674967
- DOI: https://doi.org/10.31857/S0207401X24040133
- EDN: https://elibrary.ru/VDLFDP
- ID: 674967
Дәйексөз келтіру
Аннотация
Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
Yu. Tertyshnaya
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics
							Хат алмасуға жауапты Автор.
							Email: terj@rambler.ru
				                					                																			                												                	Ресей, 							Moscow; Moscow						
M. Podzorova
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics
														Email: terj@rambler.ru
				                					                																			                												                	Ресей, 							Moscow; Moscow						
S. Karpova
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
														Email: terj@rambler.ru
				                					                																			                												                	Ресей, 							Moscow						
A. Krivandin
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
														Email: terj@rambler.ru
				                					                																			                												                	Ресей, 							Moscow						
Әдебиет тізімі
- Yu. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Russ. J. Phys. Chem. B 16 (1), 162 (2022). https://doi.org/10.1134/S1990793122010304
- S. Rogovina, L. Zhorina, A. Gatin, et al., Polym. 12, 1088 (2020). https://doi.org/10.3390/polym12051088
- I. A. Var’yan, N. N. Kolesnikova, A. A. Popov, Russ. J. Phys. Chem. B 15 (6), 1041 (2021). https://doi.org/10.1134/S1990793121060257
- C. Zhang, W. Wang, Y. Huang, et al., Mater. Design. 45, 198 (2013). https://doi.org/10.1016/j.matdes.2012.09.024
- W-L. Sia, W-Q. Yuana, Y-D. Lia, et al., Polym. Test. 65, 249 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.030
- S. Rogovina, K.V. Aleksanyan, L. V. Vladimirov, et al., Russ. J. Phys. Chem. B 13 (5), 812 (2019). https://doi.org/10.1134/S1990793119050099
- X. Lan, X. Li, Z. Liu, et al., J. Macromol. Sci., Pure Appl. Chem. 50, 861 (2013).
- Y. B. Tee, R. A. Talib, K. Abdan, et al., Agric. Agric. Sci. Proc. 2, 289 (2014). https://doi.org/10.1016/j.aaspro.2014.11.041
- N. F. Alias, H. Ismail, Polym.-Plast. Technol. Mater. 58, 1399 (2019). https://doi.org/10.1080/25740881.2018.1563118
- A. Ali Shah, F. Hasan, Z. Shah, et al., Int. Biodeterior. Biodegrad, 83, 145 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004
- B. Suksut, C. Deeprasertkul, J. Polym. Environ. 19, 288 (2010). https://doi.org/10.1007/s10924-010-0278-9
- S. Ishida, R. Nagasaki, K. Chino K., et al., J. Appl. Polym. Sci. 113, 558 (2009). https://doi.org/10.1002/app.30134
- N. Bitinis, R. Verdejo, P. Cassagnau, et al., Mater. Chem. Phys. 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
- D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
- A. A. Ol’hov, M. A. Gol’dshtrah, L. S. Shibryeva, et al., Chem. Sustainable Developm. 24 (5), 633 (2016).
- X. Zhou, J. C. Feng, J. J. Yi, et al., Mater. Design. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069
- R. Auras, B. Harte, S. Selke, Macromol. Biosci. 4, 835 (2004). https://doi.org/10.1002.MABI.200400043
- A. V. Krivandin, A. B. Solov’еva, N. N. Glagolev, et al., Polym. 44, 5789 (2003). https://doi.org/10.1016/S0032-3861(03)00588-3
- O. V. Kazarina, A. G. Morozova, I. L. Fedyshkin, Polym. Sci. 63 (2), 83 (2021). https://doi.org/10.1134/S1560090421020056
- Y. Tertyshnaya, S. Karpova, M. Moskovskiy M., et al., Polym. 13, 2232. (2021). https://doi.org/10.3390/polym13142232
- V. N. Kuleznev Mixtures of polymers, Moscow, Chemistry, 304 p. (1980)
- Yu. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, Russ. J. Phys. Chem. B. 15 (5), 854 (2021). https://doi.org/10.1134/S1990793121050092
- L. Zhang, G. Zhao, G. Wang, Polym. 13, 3280 (2021). https://doi.org/10.3390/polym13193280
- Yu. V. Tertyshnaya, A.V. Krivandin, O. V. Shatalova, Russ. J. Phys. Chem. B. 17 (1), 171 (2023). https://doi.org/10.1134/S1990793123010128
- Yu. V. Tertyshnaya, S.G. Karpova, O.V. Shatalova, et al., Polym. Sci. А. 58 (1), 50 (2016). https://doi.org/10.1134/S0965545X16010119
- H. Wang, J. Zhang, K.Tashiro, Macromolec. 50, 3285 (2017).
- L. Cartier, T. Okihara, Ikada Y., Tsuji H., Puiggali J., Lotz B. Polym. 41, 8909. (2000)
- C. Xu, D. Yuan, L. Fu, et al., Polym. Test 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді




