Controlling the Sensitivity of Pentaerythritol Tetranitrate to Visible Laser Radiation by the Addition of ZnO:Ag Nanopowder
- Autores: Zverev A.S.1, Zvekov A.A.2, Pugachev V.M.2, Dudnikova Y.N.1, Russakov D.M.2, Nurmuhametov D.R.1, Mitrofanov A.Y.2
- 
							Afiliações: 
							- Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences
- Kemerovo State University
 
- Edição: Volume 42, Nº 9 (2023)
- Páginas: 53-62
- Seção: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/674830
- DOI: https://doi.org/10.31857/S0207401X23090145
- EDN: https://elibrary.ru/DKHMHZ
- ID: 674830
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The laser initiation threshold energy densities (the laser sensitivity) of pentaerythritol tetranitrate (PETN) containing a nanostructured zinc oxide powder doped with silver (ZnO:Ag) are studied in the article. The second harmonic radiation of a pulsed Nd:YAG laser with a wavelength of 532 nm and a CW laser diode with a wavelength of 450 nm are used for initiation. The ZnO:Ag nanopowder can potentially provide photoinitiation of PETN by the photochemical mechanism. The initiation thresholds via pulsed laser initiation are compared with compositions of PETN and gold nanoparticles, which have similar optical characteristics but are chemically inert. The absorption spectra of materials in the UV, visible, and near-IR spectral regions are studied. The threshold of the laser initiation of the explosion of the PETN–ZnO:Ag composite by pulsed radiation is lower than one-third of the threshold of initiation of the PETN-nanogold composite, which has similar values of optical density. The addition of 1% mass of ZnO:Ag for the first time makes it possible to initiate PETN reliably (without failures) by the radiation of a low-power visible laser diode. The results and their comparison with the published data allow us to make a reasonable assumption on the contribution of the photochemical stages to the laser initiation of the PETN–ZnO:Ag composite by visible laser radiation.
Palavras-chave
Sobre autores
A. Zverev
Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
A. Zvekov
Kemerovo State University
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
V. Pugachev
Kemerovo State University
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
Yu. Dudnikova
Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
D. Russakov
Kemerovo State University
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
D. Nurmuhametov
Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
A. Mitrofanov
Kemerovo State University
							Autor responsável pela correspondência
							Email: anthon.zverev@yandex.ru
				                					                																			                												                								Kemerovo, Russia						
Bibliografia
- Орленко Л.П. Физика взрыва. В 2 т. М.: Физмалит, 2004.
- Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P. // J. Hazard. Mater. 2008. V. 151. № 2–3. P. 289; https://doi.org/10.1016/j.jhazmat.2007.10.039
- Talawar M.B., Sivabalan R., Mukundan T. et al. // Ibid. 2009. V. 161. № 2–3. P. 589; https://doi.org/10.1016/j.jhazmat.2008.04.011
- Sabatini J.J., Johnson E.C. // ACS omega. 2021. V. 6. № 18. P. 11813; https://doi.org/10.1021/acsomega.1c01115
- Muravyev N.V., Monogarov K.A., Schaller U. et al. // Propellants, Explos. Pyrotech. 2019. V. 44. № 8. P. 941; https://doi.org/10.1002/prep.201900060
- Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 1. С. 34; https://doi.org/10.31857/S0207401X2201006X
- Zeman S., Jungová M. // Propellants, Explos. Pyrotech. 2016. V. 41. № 3. P. 426; https://doi.org/10.1002/prep.201500351
- Sikder A.K., Sikder N. // J. Hazard. Mater. 2004. V. 112. № 1–2. P. 1; https://doi.org/10.1016/j.jhazmat.2004.04.003
- Таржанов В.И. Быстрое инициирование ВВ. Особые режимы детонации. Снежинск: Изд-во РФЯЦ-ВНИИТФ, 1998.
- Bowden M.D., Cheeseman M., Knowles S.L., Drake R.C. // Proc. Intern. Conf. “Optical Technologies for Arming, Safing, Fuzing, and Firing III”. V. 6662. SPIE, 2007. P. 70; https://doi.org/10.1117/12.734225
- Ahmad S.R., Cartwright M. Laser ignition of energetic materials. Chichester: John Wiley & Sons, 2014; https://doi.org/10.1002/9781118683521
- De Yong L., Nguyen T., Waschl J. Laser Ignition of Explosives, Pyrotechnics and Propellants: A Review. Report DSTO-TR-0068, Defence Science and Technology Organisation, Aeronautical and Maritime Research Laboratory, Canberra, Australia, 1995.
- Brish A.A., Galeev I.A., Zaitsev B.N. et al. // Combust. Explos. Shock Waves. 1969. V. 5. № 4. 326; https://doi.org/10.1007/BF00742068
- Aluker E.D., Zverev A.S., Krechetov A.G. et al. // Russ. Phys. J. 2014. V. 56. № 12. P. 1357; https://doi.org/10.1007/s11182-014-0186-x
- Fang X., McLuckie W.G. // J. Hazard. Mater. 2015. V. 285. P. 375; https://doi.org/10.1016/j.jhazmat.2014.12.006
- Адуев Б.П., Нурмухаметов Д.Р., Крафт Я.В., Исмагилов З.Р. // Хим. физика. 2022. Т. 41. № 3. С. 13; https://doi.org/10.31857/S0207401X22030025
- De N.N., Cummock N.R., Gunduz I.E., Tappan B.C. // Combust. and Flame. 2016. V. 167. P. 207; https://doi.org/10.1016/j.combustflame.2016.02.011
- Tarzhanov V.I., Sdobnov V.I., Zinchenko A.D., Pogrebov A.I. // Combust. Explos. Shock Waves. 2017. V. 53. № 2. P. 229; https://doi.org/10.1134/S0010508217020149
- Aduev B.P., Nurmukhametov D.R., Liskov I.Y. et al. // Combust and Flame. 2020. V. 216. P. 468; https://doi.org/10.1016/j.combustflame.2019.10.037
- Kalenskii A.V., Anan’eva M.V., Zvekov A.A., Zykov I.Y. // Combust. Explos. Shock Waves. 2016. V. 52. № 2. P. 234; https://doi.org/10.1134/S0010508216020143
- Fang X., Sharma M., Stennett C., Gill P.P. // Combust and Flame. 2017. V. 183. P. 15; https://doi.org/10.1016/j.combustflame.2017.05.002
- Wilkins P.R. Laser Deflagration-to-Detonation in Keto-RDX doped with Resonant Hollow Gold Nanoshells (No. LLNL-CONF-656673). 2014; https://www.osti.gov/servlets/purl/1149566
- Wang H., Jacob R.J., DeLisio J.B., Zachariah M.R. // Combust and Flame. 2017. V. 180. P. 175; https://doi.org/10.1016/j.combustflame.2017.02.036
- Коротких А.Г., Сорокин И.В., Архипов В.А. // Хим. физика. 2022. Т. 41. № 3. С. 41; https://doi.org/10.31857/S0207401X22030074
- Tsyshevsky R., Zverev A.S., Mitrofanov A.Y. et al. // J. Phys. Chem. C. 2016. V. 120. № 43. P. 24835; https://doi.org/10.1021/acs.jpcc.6b08042
- Kuklja M.M., Tsyshevsky R., Zverev A.S. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 43. P. 25284; https://doi.org/10.1039/D0CP04069J
- Ong C.B., Ng L.Y., Mohammad A.W. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 536; https://doi.org/10.1016/j.rser.2017.08.020
- Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. // J. Ind. Eng. Chem. 2018. V. 62. P. 1; https://doi.org/10.1016/j.jiec.2018.01.012
- Громов В.Ф., Иким М.И., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 12. С. 76; https://doi.org/10.31857/S0207401X21120062
- Liu Y., Zhang Q., Yuan H. et al. // J. Alloys Compd. 2021. V. 868. P. 8723; https://doi.org/10.1016/j.jallcom.2021.158723
- Frens G. // Nature. Phys. Sci. 1973. V. 241. P. 20; https://doi.org/10.1038/physci241020a0
- Aduev B.P., Nurmukhametov D.R., Belokurov G.M. et al. // Opt. Spectrosc. 2018. V. 124. № 3. P. 412; https://doi.org/10.1134/S0030400X18030049
- Kihara K., Donnay G. // Can. Mineral. 1985. V. 23. № 4. P. 647; https://pubs.geoscienceworld.org/canmin/article-abstract/23/4/647/11836/Anharmonic-thermal-vibrations-in-ZnO
- Wyckoff R.W.G., Wyckoff R.W. Crystal structures V. 1. N.Y.: Interscience Publ., 1963.
- Aduev B.P., Nurmukhametov D.R., Zvekov A.A. et al. // Tech. Phys. 2019. V. 64. № 2. P. 143; https://doi.org/10.1134/S1063784219020026
- Tsyshevsky R.V., Rashkeev S.N., Kuklja M.M. // Surf. Sci. 2015. V. 637. P. 19; https://doi.org/10.1016/j.susc.2015.01.021
- Fageria P., Gangopadhyay S., Pande S. // RSC Adv. 2014. V. 4. № 48. P. 24962; https://doi.org/10.1039/C4RA03158J
- Gerasimov S.I., Kuz’min V.A., Ilyushin M.A. // Tech. Phys. Lett. 2015. V. 41. № 4. P. 338; https://doi.org/10.1134/S1063785015040070
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




