Determination of the Electron Temperature of Shock-Heated Air from the Measured Radiation Intensities
- Autores: Bykova N.G.1, Zabelinskii I.E.1, Kozlov P.V.1, Gerasimov G.Y.1, Levashov V.Y.1
- 
							Afiliações: 
							- Institute of Mechanics, Moscow State University
 
- Edição: Volume 42, Nº 4 (2023)
- Páginas: 64-72
- Seção: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/674880
- DOI: https://doi.org/10.31857/S0207401X23040040
- EDN: https://elibrary.ru/MVTAZT
- ID: 674880
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The results of the radiation characteristics of shock-heated air measurements in the vacuum-ultraviolet region are presented. The experiments are carried out in the STS shock tube of the Institute of Mechanics, Moscow State University at shock-wave velocities of 7.3 to 10.7 km/s and initial pressures in the low-pressure chamber of 0.125, 0.2, and 0.25 Torr. An analytical model of the radiation process is constructed, which takes into account the absorption of radiation during its passage through the air . Processing the experimental dependences of the radiation intensity on time for the main radiation lines using this model made it possible to propose a radiation method for determining the electron temperature of a shock-heated gas. The presented data are compared with the experimental data of other authors.
Palavras-chave
Sobre autores
N. Bykova
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
I. Zabelinskii
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
P. Kozlov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
G. Gerasimov
Institute of Mechanics, Moscow State University
														Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
V. Levashov
Institute of Mechanics, Moscow State University
							Autor responsável pela correspondência
							Email: vyl69@mail.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341.
- Reyner P. // Prog. Aerospace Sci. 2016. V. 85. P. 1.
- Gu S., Olivier H. // Prog. Aerospace Sci. 2020. V. 113. № 100 607.
- Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. // AIAA Paper. 2016. № 2016-0312.
- Balakalyani G., Jagadeesh G. // Measurement. 2019. V. 136. P. 636.
- Dufrene A., MacLean M., Parker R., Holden M. // AIAA Paper. 2011. № 2011-626.
- Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17.
- Суржиков С.Т. // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 249.
- Beyer J., Pfeiffer M., Fasoulas S. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. № 108083.
- Kim J.G., Jo S.M. // Intern. J. Heat Mass Transfer. 2021. V. 169. № 120950.
- Shang J.S., Surzhikov S.T. // Prog. Aerospace Sci. 2012. V. 53. P. 46.
- Oyama K.I. // J. Astronomy Space Sci. 2015. V. 32. P. 167.
- Jiang S.-B., Yeh T.-L., Liu J.-Y. et al. // Adv. Space Res. 2020. V. 66. P. 148.
- Nomura S., Kawakami T., Fujita K. // J. Thermophys. Heat Trans. 2021. V. 35. P. 518.
- Roettgen A., Petrischev V., Adamovich I.V., Lempert W.R. // AIAA Paper. 2015. № 2015-1829.
- Быкова Н.Г., Забелинский И.Е., Ибрагимова Л.Б. и др. // Хим. физика. 2018. Т. 37. № 2. С. 35.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Акимов Ю.В., Левашов В.Ю., Герасимов Г.Я., Тереза А.М. // Хим. физика. 2022. Т. 41. № 9. С. 26.
- Лебедева В.В. Техника оптической спектроскопии. М.: Изд-во МГУ, 1986.
- Nordebo S. // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 270. № 107715.
- Методы исследования плазмы / Под ред. Лохте-Хольтгревена В. М.: Мир, 1971.
- Суржиков С.Т. Оптические свойства газов и плазмы. М.: Изд-во МГТУ, 2004.
- Грим Г. Уширение спектральных линий в плазме. М.: Мир, 1978.
- Сивухин Д.В. Общий курс физики. Т. 4. Оптика. М.: Физматлит, 2021.
- NIST Atomic Spectra Database. Ver. 5.9. Gaithersburg: NIST, 2021; https://doi.org/10.18434/T4W30F
- Dikalyuk A.S., Kozlov P.V., Romanenko Y.V., Shatalov O.P., Surzhikov S.T. // AIAA Paper. 2013. № 2013-2505.
- Горелов В.А., Киреев А.Ю. // ПМТФ. 2016. Т. 57. № 1. С. 176.
- Gorelov V.A., Kildushova L.A., Kireev A.Yu. // AIAA Paper. 1994. № 94-2051.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








